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Abstract. As inductive inference and machine learning methods in computer
science see continued success, researchers are aiming to describe even more com-
plex probabilistic models and inference algorithms. What are the limits of mech-
anizing probabilistic inference? We investigate the computability of conditional
probability, a fundamental notion in probability theory and a cornerstone of
Bayesian statistics, and show that there are computable joint distributions with
noncomputable conditional distributions, ruling out the prospect of general in-
ference algorithms, even inefficient ones. Specifically, we construct a pair of com-
putable random variables in the unit interval such that the conditional distribu-
tion of the first variable given the second encodes the halting problem. Neverthe-
less, probabilistic inference is possible in many common modeling settings, and
we prove several results giving broadly applicable conditions under which condi-
tional distributions are computable. In particular, conditional distributions be-
come computable when measurements are corrupted by independent computable
noise with a sufficiently smooth density.

1. Introduction

The use of probability to reason about uncertainty is key to modern science and
engineering, and the operation of conditioning, used to perform Bayesian induc-
tive reasoning in probabilistic models, directly raises many of its most important
computational problems. Faced with probabilistic models of increasingly complex
phenomena that stretch or exceed the limitations of existing representations and
algorithms, researchers have proposed new representations and formal languages
for describing joint distributions on large collections of random variables, and have
developed new algorithms for performing automated probabilistic inference. What
are the limits of this endeavor? Can we hope to automate probabilistic reasoning
via a general inference algorithm that can compute conditional probabilities for an
arbitrary computable joint distribution?

We demonstrate that there are computable joint distributions with noncom-
putable conditional distributions. Of course, the fact that generic algorithms cannot
exist for computing conditional probabilities does not rule out the possibility that
large classes of distributions may be amenable to automated inference. The chal-
lenge for mathematical theory is to explain the widespread success of probabilistic
methods and characterize the circumstances when conditioning is possible. In this

Keywords. Computable probability theory, conditional probability, real computation.
2010 Mathematics Subject Classification. Primary: 03D78; Secondary: 62F15, 68T37, 60B05,

03F60, 65G50, 60A05, 60A10.



ON THE COMPUTABILITY OF CONDITIONAL PROBABILITY 2

vein, we describe broadly applicable conditions under which conditional probabilities
are computable.

1.1. Probabilistic programming. Within probabilistic Artificial Intelligence (AI)
and machine learning, the study of formal languages and algorithms for describing
and computing answers from probabilistic models is the subject of probabilistic pro-
gramming. Probabilistic programming languages themselves build on modern pro-
gramming languages and their facilities for recursion, abstraction, modularity, etc.,
to enable practitioners to define intricate, in some cases infinite-dimensional, mod-
els by implementing a generative process that produces an exact sample from the
model’s joint distribution. (See, e.g., IBAL [Pfe01], λ◦[PPT08], Church [GMR+08],
and HANSEI [KS09]. For related and earlier efforts, see, e.g., PHA [Poo91], In-
fer.NET [MWGK10], Markov Logic [RD06]. Probabilistic programming languages
have been the focus of a long tradition of research within programming languages,
model checking and formal methods.) In many of these languages, one can easily
represent the higher-order stochastic processes (e.g., distributions on data struc-
tures, distributions on functions, and distributions on distributions) that are essen-
tial building blocks in modern nonparametric Bayesian statistics. In fact, the most
expressive such languages are each capable of describing the same robust class as
the others—the class of computable distributions, which delineates those from which
a probabilistic Turing machine can sample to arbitrary accuracy.

Traditionally, inference algorithms for probabilistic models have been derived and
implemented by hand. In contrast, probabilistic programming systems have intro-
duced varying degrees of support for computing conditional distributions. Given the
rate of progress toward broadening the scope of these algorithms, one might hope
that there would eventually be a generic algorithm supporting the entire class of
computable distributions.

Despite recent progress towards a general such algorithm, support for conditioning
with respect to continuous random variables has remained ad-hoc and incomplete.
Our results explain why this is necessarily the case.

1.2. Computable Distributions. In order to characterize the computational lim-
its of probabilistic inference, we work within the framework of computable probability
theory, which pertains to the computability of distributions, random variables, and
probabilistic operations; and builds on the classical computability theory of deter-
ministic functions. Just as the notion of a Turing machine allows one to prove
results about discrete computations performed using an arbitrary (sufficiently pow-
erful) programming language, the notion of a probabilistic Turing machine provides
a basis for precisely describing the operations that probabilistic programming lan-
guages are capable of performing.

The tools for describing computability in this setting are drawn from the theory
of computable metric spaces, within the subject of computable analysis. This theory
gives us the ability to study distributions on arbitrary computable metric spaces,
including, e.g., distributions on distributions. In Section 2 we present the necessary
definitions and results from computable probability theory.
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1.3. Conditional Probability. For an experiment with a discrete set of outcomes,
computing conditional probabilities is, in principle, straightforward as it is simply a
ratio of probabilities. However, in the case of conditioning on the value of a continu-
ous random variable, this ratio is undefined. Furthermore, in modern Bayesian sta-
tistics, and especially the probabilistic programming setting, it is common to place
distributions on higher-order objects, and so one is already in a situation where el-
ementary notions of conditional probability are insufficient and more sophisticated
measure-theoretic notions are necessary.

Kolmogorov [Kol33] gave an axiomatic characterization of conditional probabil-
ities, but this definition provides no recipe for their calculation. Other issues also
arise: In this setting, conditional probabilities are formalized as measurable func-
tions that are defined only up to measure zero sets. Therefore, without additional
assumptions, a conditional probability is not necessarily well-defined for any partic-
ular value of the conditioning random variable. This has long been understood as
a challenge for statistical applications, in which one wants to evaluate conditional
probabilities given particular values for observed random variables. In this paper,
we are therefore especially interested in situations where it makes sense to ask for
the conditional distribution given a particular point. In particular, we focus on the
case when conditional distributions are everywhere or almost everywhere continu-
ous, and thus can be given a unique definition for individual points in the support
of the underlying measure. As we will argue, this is necessary if there is to be any
hope of conditioning being computable.

Under certain conditions, such as when conditional densities exist, conditioning
can proceed using the classic Bayes’ rule; however, it may not be possible to compute
the density of a computable distribution (if the density exists at all). The probability
and statistics literature contains many ad-hoc techniques for calculating conditional
probabilities in special circumstances, and this state of affairs motivated much work
on constructive definitions (such as those due to Tjur [Tju74], [Tju75], [Tju80],
Pfanzagl [Pfa79], and Rao [Rao88], [Rao05]), but this work has often not been
sensitive to issues of computability.

We recall the basics of the measure-theoretic approach to conditional distributions
in Section 3, and in Section 4 we use notions from computable probability theory
to consider the sense in which conditioning could be potentially computable.

1.4. Other Related Work. Conditional probabilities for computable distributions
on finite, discrete sets are clearly computable, but may not be efficiently so. In
this finite discrete setting, there are already interesting questions of computational
complexity, which have been explored by a number of authors through extensions
of Levin’s theory of average-case complexity [Lev86]. For example, under crypto-
graphic assumptions, it is difficult to sample from the conditional distribution of
a uniformly-distributed binary string of length n given its image under a one-way
function. This can be seen to follow from the work of Ben-David, Chor, Goldre-
ich, and Luby [BCGL92] in their theory of polynomial-time samplable distributions,
which has since been extended by Yamakami [Yam99] and others. Extending these
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complexity results to the more general setting considered here could bear on the
practice of statistical AI and machine learning.

Osherson, Stob, and Weinstein [OSW88] study learning theory in the setting of
identifiability in the limit (see [Gol67] and [Put65] for more details on this setting)
and prove that a certain type of “computable Bayesian” learner fails to identify
the index of a (computably enumerable) set that is “computably identifiable” in the
limit. More specifically, a so-called “Bayesian learner” is required to return an index
for a set with the highest conditional probability given a finite prefix of an infinite
sequence of random draws from the unknown set. An analysis by Roy [Roy11]
of their construction reveals that the conditional distribution of the index given
the infinite sequence is an everywhere discontinuous function (on every measure one
set), hence noncomputable for much the same reason as our elementary construction
involving a mixture of measures concentrated on the rationals and on the irrationals
(see Section 5). As we argue, it is more appropriate to study the operator when it is
restricted to those random variables whose conditional distributions admit versions
that are continuous everywhere, or at least on a measure one set.

Our work is distinct from the study of conditional distributions with respect to
priors that are universal for partial computable functions (as defined using Kol-
mogorov complexity) by Solomonoff [Sol64], Zvonkin and Levin [ZL70], and Hutter
[Hut07]. The computability of conditional distributions also has a rather different
character in Takahashi’s work on the algorithmic randomness of points defined using
universal Martin-Löf tests [Tak08]. The objects with respect to which one is condi-
tioning in these settings are typically computably enumerable, but not computable.
In the present paper, we are interested in the problem of computing conditional
distributions of random variables that are computable, even though the conditional
distribution may itself be noncomputable.

In the most abstract setting, conditional probabilities can be constructed as
Radon-Nikodym derivatives. In work motivated by questions in algorithmic ran-
domness, Hoyrup and Rojas [HR11] study notions of computability for absolute
continuity and for Radon-Nikodym derivatives as elements in L1, i.e., the space
of integrable functions. They demonstrate that there are computable measures
whose Radon-Nikodym derivatives are not computable as points in L1, but these
counterexamples do not correspond with conditional probabilities of computable
random variables. Hoyrup, Rojas and Weihrauch [HRW11] show an equivalence
between the problem of computing general Radon-Nikodym derivatives as elements
in L1 and computing the characteristic function of computably enumerable sets.
However, conditional probabilities are a special case of Radon-Nikodym derivatives,
and moreover, a computable element in L1 is not well-defined at points, and so
is not ideal for statistical purposes. Using their machinery, we demonstrate the
non-L1-computability of our main construction. But the main goal of our paper is
to provide a detailed analysis of the situation where it makes sense to ask for the
conditional probability at points, which is the more relevant scenario for statistical
inference.
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1.5. Summary of Results. Following our presentation of computable probability
theory and conditional probability in Sections 2 through 4, we provide our main
positive and negative results about the computability of conditional probability,
which we now summarize.

In Proposition 5.1, we construct a pair (X,C) of computable random variables
such that every version of the conditional probability P[C = 1|X] is discontinuous
everywhere, even when restricted to a PX-measure one subset. (We make these
notions precise in Section 4.) The construction makes use of the elementary fact that
the indicator function for the rationals in the unit interval—the so-called Dirichlet
function—is itself nowhere continuous.

Because every function computable on a domain D is continuous on D, discon-
tinuity is a fundamental barrier to computability, and so this construction rules
out the possibility of a completely general algorithm for conditioning. A natural
question is whether conditioning is a computable operation when we restrict the
operator to random variables for which some version of the conditional distribution
is continuous everywhere, or at least on a measure one set.

Our central result, Theorem 6.7, states that conditioning is not a computable
operation on computable random variables, even in this restricted setting. We
construct a pair (X,N) of computable random variables such that there is a version
of the conditional distribution P[N|X] that is continuous on a measure one set, but no
version of P[N|X] is computable. (Indeed, every individual conditional probability
fails to be even lower semicomputable on any set of sufficient measure.) Moreover,
the noncomputability of P[N|X] is at least as hard as the halting problem, in that
if some oracle A computes P[N|X], then A computes the halting problem. The
construction involves encoding the halting times of all Turing machines into the
conditional distribution P[N|X], while ensuring that the joint distribution remains
computable.

In Theorem 7.6 we strengthen our central result by constructing a pair of com-
putable random variables whose conditional distribution is noncomputable but has
an everywhere continuous version with infinitely differentiable conditional proba-
bilities. This construction proceeds by smoothing out the distribution constructed
in Theorem 6.7, but in such a way that one can still compute the halting problem
relative to the conditional distribution.

Despite the noncomputability of conditioning in general, conditional distributions
are often computable in practice. We provide some explanation of this phenome-
non by characterizing several circumstances in which conditioning is a computable
operation. Under suitable computability hypotheses, conditioning is computable in
the discrete setting (Lemma 8.1) and where there is a conditional density (Corol-
lary 8.8).

We also characterize a situation in which conditioning is possible in the presence of
noisy data, capturing many natural models in science and engineering. Let U, V and
E be computable random variables, and suppose that PE is absolutely continuous
with a bounded computable density pE and E is independent of U and V. We
can think of U+E as the corruption of an idealized measurement U by independent
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source of additive error E. In Corollary 8.9, we show that the conditional distribution
P[(U,V) |U+E] is computable (even if P[(U,V) |U] is not). Finally, we discuss how
symmetry can contribute to the computability of conditional distributions.

2. Computable Probability Theory

We now give some background on computable probability theory, which will en-
able us to formulate our results. The foundations of the theory include notions
of computability for probability measures developed by Edalat [Eda96], Weihrauch
[Wei99], Schroeder [Sch07b], and Gács [Gác05]. Computable probability theory it-
self builds off notions and results in computable analysis. For a general introduction
to this approach to real computation, see Weihrauch [Wei00], Braverman [Bra05] or
Braverman and Cook [BC06].

2.1. Computable and C.e. Reals. We first recall some elementary definitions
from computability theory (see, e.g. Rogers [Rog87, Ch. 5]). We say that a set of
natural numbers (potentially in some correspondence with, e.g., rationals, integers,
or other finitely describable objects with an implicit enumeration) is computably
enumerable (c.e.) when there is a computer program that outputs every element
of the set eventually. We say that a sequence of sets {Bn} is c.e. uniformly in n
when there is a computer program that, on input n, outputs every element of Bn
eventually. A set is co-c.e. when its complement is c.e. (and so the (uniformly)
computable sets are precisely those that are both (uniformly) c.e. and co-c.e).

We now recall basic notions of computability for real numbers (see, e.g., [Wei00,
Ch. 4.2] or [Nie09, Ch. 1.8]). We say that a real r is a c.e. real when the set
of rationals {q ∈ Q : q < r} is c.e. Similarly, a co-c.e. real is one for which
{q ∈ Q : q > r} is c.e. (C.e. and co-c.e. reals are sometimes called left-c.e. and
right-c.e. reals, respectively.) A real r is computable when it is both c.e. and co-
c.e. Equivalently, a real is computable when there is a program that approximates
it to any given accuracy (e.g., given an integer k as input, the program reports a
rational that is within 2−k of the real). A function f : N → R is lower (upper)
semicomputable when f(n) is a c.e. (co-c.e.) real, uniformly in n (or more precisely,
when the rational lower (upper) bounds of f(n) are c.e. uniformly in n). The
function f is computable if and only if it is both lower and upper semicomputable.

2.2. Computable Metric Spaces. Computable metric spaces, as developed in
computable analysis [Hem02], [Wei93] and effective domain theory [JB97], [EH98],
provide a convenient framework for formulating results in computable probability
theory. For consistency, we largely use definitions from [HR09a] and [GHR10].
Additional details about computable metric spaces can also be found in [Wei00,
Ch. 8.1] and [Gác05, §B.3].

Definition 2.1 (Computable metric space [GHR10, Def. 2.3.1]). A computable
metric space is a triple (S, δ,D) for which δ is a metric on the set S satisfying

(1) (S, δ) is a complete separable metric space;
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(2) D = {si}i∈N is an enumeration of a dense subset of S, called ideal points;
and,

(3) the real numbers δ(si, sj) are computable, uniformly in i and j.

Let B(si, qj) denote the ball of radius qj centered at si. We call

BS := {B(si, qj) : si ∈ D, qj ∈ Q, qj > 0} (1)

the ideal balls of S, and fix the canonical enumeration of them induced by that of
D and Q.

For example, the set {0, 1} is a computable metric space under the discrete met-
ric, characterized by δ(0, 1) = 1. Cantor space, the set {0, 1}∞ of infinite binary
sequences, is a computable metric space under its usual metric and the dense set of
eventually constant strings (under a standard enumeration of finite strings). The
set R of real numbers is a computable metric space under the Euclidean metric with
the dense set Q of rationals (under its standard enumeration).

We let BS denote the Borel σ-algebra on a metric space S, i.e., the σ-algebra
generated by the open balls of S. In this paper, measurable functions will always
be with respect to the Borel σ-algebra of a metric space.

Definition 2.2 (Computable point [GHR10, Def. 2.3.2]). Let (S, δ,D) be a com-
putable metric space. A point x ∈ S is computable when there is a program that
enumerates a sequence {xi} in D where δ(xi, x) < 2−i for all i. We call such a
sequence {xi} a representation of the point x.

Remark 2.3. A real α ∈ R is computable (as in Section 2.1) if and only if α is
a computable point of R (as a computable metric space). Although most of the
familiar reals are computable, there are only countably many computable reals, and
so almost every real is not computable.

The notion of a c.e. open set (or Σ0
1 class) is fundamental in classical computability

theory, and admits a simple definition in an arbitrary computable metric space.

Definition 2.4 (C.e. open set [GHR10, Def. 2.3.3]). Let (S, δ,D) be a computable
metric space with the corresponding enumeration {Bi}i∈N of the ideal open balls
BS . We say that U ⊆ S is a c.e. open set when there is some c.e. set E ⊆ N such
that U =

⋃
i∈E Bi.

Note that the class of c.e. open sets is closed under computable unions and finite
intersections.

A computable function can be thought of as a continuous function whose local
modulus of continuity is witnessed by a program. It is important to consider the
computability of partial functions, because many natural and important random
variables are continuous only on a measure one subset of their domain.

Definition 2.5 (Computable partial function [GHR10, Def. 2.3.6]). Let (S, δS ,DS)
and (T, δT ,DT ) be computable metric spaces, the latter with the corresponding
enumeration {Bn}n∈N of the ideal open balls BT . A function f : S → T is said to
be computable on R ⊆ S when there is a computable sequence {Un}n∈N of c.e.
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open sets Un ⊆ S such that f−1[Bn] ∩ R = Un ∩ R for all n ∈ N. We call such a
sequence {Un}n∈N a witness to the computability of f .

In particular, if f is computable on R, then the inverse image of c.e. open sets
are c.e. open (in R) sets, and so we can see computability as a natural restriction
on continuity.

Remark 2.6. Let S and T be computable metric spaces. If f : S → T is computable
on some subset R ⊆ S, then for every computable point x ∈ R, the point f(x) is also
computable. One can show that f is computable on R when there is a program that
uniformly transforms representations of points in R to representations of points in
S. (For more details, see [HR09a, Prop. 3.3.2].)

Remark 2.7. Suppose that f : S → T is computable on R ⊆ S with {Un}n∈N
a witness to the computability of f . One can show that there is an effective Gδ
set R′ ⊇ R and a function f ′ : S → T such that f ′ is computable on R′, the
restriction of f ′ to R and f are equal as functions, and {Un}n∈N is a witness to the
computability of f ′. Furthermore, a Gδ-code for R′ can be chosen uniformly in the
witness {Un}n∈N. One could consider such an f ′ to be a canonical representative of
the computable partial function f with witness {Un}n∈N. Note, however, that the
Gδ-set chosen depends not just on f , but also on the witness {Un}n∈N. In particular,
it is possible that two distinct witnesses to the computability of f could result in
distinct Gδ-sets.

2.3. Computable Random Variables. Intuitively, a random variable maps an
input source of randomness to an output, inducing a distribution on the output
space. Here we will use a sequence of independent fair coin flips as our source of
randomness. We formalize this via the probability space ({0, 1}∞,F ,P), where
{0, 1}∞ is the product space of infinite binary sequences, F is its Borel σ-algebra
(generated by the set of basic clopen cylinders extending each finite binary sequence),
and P is the product measure of the uniform distribution on {0, 1}. Henceforth we
will take ({0, 1}∞,F ,P) to be the basic probability space, unless otherwise stated.

For a measure space (Ω,G , µ), a set E ∈ G is a µ-null set when µE = 0. More
generally, for p ∈ [0,∞], we say that E is a µ-measure p set when µE = p. A
relation between functions on Ω is said to hold µ-almost everywhere (abbreviated
µ-a.e.) if it holds for all ω ∈ Ω outside of a µ-null set. When µ is a probability
measure, then we may instead say that the relation holds for µ-almost all ω (abbre-
viated µ-a.a.). We say that an event E ∈ G occurs µ-almost surely (abbreviated
µ-a.s.) when µE = 1. In each case, we may drop the prefix µ- when it is clear from
context (in particular, when it holds of P).

We will use a SANS SERIF font for random variables.

Definition 2.8 (Random variable and its distribution). Let S be a computable
metric space. A random variable in S is a function X : {0, 1}∞ → S that is
measurable with respect to the Borel σ-algebras of {0, 1}∞ and S. For a measurable
subset A ⊆ S, we let {X ∈ A} denote the inverse image

X−1[A] = {ω ∈ {0, 1}∞ : X(ω) ∈ A}, (2)
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and for x ∈ S we similarly define the event {X = x}. We will write PX for the
distribution of X, which is the measure on S defined by PX( · ) := P{X ∈ · }.

Definition 2.9 (Computable random variable). Let S be a computable metric
space. Then a random variable X in S is a computable random variable when
X is computable on some P-measure one subset of {0, 1}∞.

More generally, for a probability measure µ and function f between computable
metric spaces, we say that f is µ-almost computable when it is computable on
a µ-measure one set. (See [HR09a] for further development of the theory of almost
computable functions.)

Intuitively, X is a computable random variable when there is a program that,
given access to an oracle bit tape ω ∈ {0, 1}∞, outputs a representation of the point
X(ω) (i.e., enumerates a sequence {xi} in D where δ(xi,X(ω)) < 2−i for all i), for
all but a measure zero subset of bit tapes ω ∈ {0, 1}∞.

Even though the source of randomness is a sequence of discrete bits, there are
computable random variables with continuous distributions, such as a uniform ran-
dom variable (gotten by subdividing the interval according to the random bittape)
or an i.i.d.-uniform sequence (by splitting up the given element of {0, 1}∞ into count-
ably many disjoint subsequences and dovetailing the constructions). (For details,
see [FR10, Ex. 3, 4].) All of the standard distributions (standard normal, uniform,
geometric, exponential, etc.) found in probability textbooks, as well the transfor-
mations of these distributions by computable (or almost computable) functions, are
easily shown to be computable distributions.

It is crucial that we consider random variables that are computable only on a P-
measure one subset of {0, 1}∞. Consider the following example: For a real α ∈ [0, 1],
we say that a binary random variable X : {0, 1}∞ → {0, 1} is a Bernoulli(α)
random variable when PX{1} = α. There is a Bernoulli(1

2) random variable that is
computable on all of {0, 1}∞, given by the program that simply outputs the first bit
of the input sequence. Likewise, when α is dyadic (i.e., a rational with denominator
a power of 2), there is a Bernoulli(α) random variable that is computable on all of
{0, 1}∞. However, this is not possible for any other choices of α (e.g., 1

3).

Proposition 2.10. Let α ∈ [0, 1] be a nondyadic real. Every Bernoulli(α) random
variable X : {0, 1}∞ → {0, 1} is discontinuous, hence not computable on all of
{0, 1}∞.

Proof. Assume X is continuous. Let Z0 := X−1(0) and Z1 := X−1(1). Then
{0, 1}∞ = Z0 ∪ Z1, and so both are closed (as well as open). The compactness
of {0, 1}∞ implies that these closed subspaces are also compact, and so Z0 and Z1

can each be written as the finite disjoint union of clopen basis elements. But each
of these elements has dyadic measure, hence their sum cannot be either α or 1− α,
contradicting the fact that P(Z1) = 1−P(Z0) = α. �

On the other hand, for an arbitrary computable α ∈ [0, 1], consider the random
variable Xα given by Xα(x) = 1 if

∑∞
i=0 xi2

−i−1 < α and 0 otherwise. This construc-
tion, due to [Man73], is a Bernoulli(α) random variable and is computable on every
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point of {0, 1}∞ other than a binary expansion of α. Not only are these random
variables computable, but they can be shown to be optimal in their use of input bits,
via the classic analysis of rational-weight coins by Knuth and Yao [KY76]. Hence
it is natural to admit as computable random variables those measurable functions
that are computable only on a P-measure one subset of {0, 1}∞, as we have done.

2.4. Computable Probability Measures. In this section, we introduce the class
of computable probability measures and describe their connection with computable
random variables.

Let (S, δS ,DS) be a computable metric space, and let B(S) denote its Borel sets.
We will denote byM(S) the set of (Borel) measures on S and byM1(S) the subset
which are probability measures. Consider the subset DP ⊆ M1(S) comprised of
those probability measures that are concentrated on a finite subset of DS and where

the measure of each atom is rational, i.e., ν ∈ DP if and only if ν =
∑k

i=1 qiδti for

some rationals qi ≥ 0 such that
∑k

i=1 qi = 1 and some points ti ∈ DS , where δti
denotes the Dirac delta on ti. Gács [Gác05, §B.6.2] shows that DP is dense in the
Prokhorov metric δP given by

δP (µ, ν) := inf {ε > 0 : ∀A ∈ B(S), µ(A) ≤ ν(Aε) + ε} , (3)

where

Aε := {p ∈ S : ∃q ∈ A, δS(p, q) < ε} =
⋃
p∈ABε(p) (4)

is the ε-neighborhood of A and Bε(p) is the open ball of radius ε about p. Moreover,
(M1(S), δP ,DP ) is a computable metric space. (See also [HR09a, Prop. 4.1.1].) We
say that µ ∈ M1(S) is a computable (Borel) probability measure when µ is a
computable point in M1(S) as a computable metric space. Note that the measure
P on {0, 1}∞ is a computable probability measure.

We can characterize the class of computable probability measures in terms of the
computability of the measure of open sets.

Theorem 2.11 ([HR09a, Thm. 4.2.1]). Let (S, δS ,DS) be a computable metric
space. A probability measure µ ∈ M1(S) is computable if and only if the measure
µ(A) of a c.e. open set A ⊆ S is a c.e. real, uniformly in A.

Definition 2.12 (Computable probability space [GHR10, Def. 2.4.1]). A com-
putable probability space is a pair (S, µ) where S is a computable metric space
and µ is a computable probability measure on S.

Let (S, µ) be a computable probability space. We know that the measure of a
c.e. open set A is a c.e. real, but is not in general a computable real. On the other
hand, if A is a decidable subset (i.e., S \A is c.e. open) then µ(S \A) a c.e. real, and
therefore, by the identity µ(A) + µ(S \ A) = 1, we have that µ(A) is a computable
real. In connected spaces, the only decidable subsets are the empty set and the
whole space. However, there exists a useful surrogate when dealing with measure
spaces.
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Definition 2.13 (Almost decidable set [GHR10, Def. 3.1.3]). Let (S, µ) be a com-
putable probability space. A (Borel) measurable subset A ⊆ S is said to be µ-
almost decidable when there are two c.e. open sets U and V such that U ⊆ A
and V ⊆ S \A and µ(U) + µ(V ) = 1.

The following is immediate.

Lemma 2.14 ([GHR10, Prop. 3.1.1]). Let (S, µ) be a computable probability space,
and let A be µ-almost decidable. Then µ(A) is a computable real.

While we may not be able to compute the probability measure of ideal balls, we
can compute a new basis of ideal balls for which we can. (See also Bosserhoff [Bos08,
Lem. 2.15].)

Lemma 2.15 ([GHR10, Thm. 3.1.2]). Let (S, µ) be a computable probability space,
and let DS be the ideal points of S with standard enumeration {di}i∈N. There is a
computable sequence {rj}j∈N of reals, dense in the positive reals, such that the balls
{B(di, rj)}i,j∈N form a basis of µ-almost decidable sets.

We now show that every c.e. open set is the union of a computable sequence of
almost decidable subsets.

Lemma 2.16 (Almost decidable subsets). Let (S, µ) be a computable probability
space and let V be a c.e. open set. Then, uniformly in V , we can compute a se-
quence of µ-almost decidable sets {Vk}k∈N such that, for each k, Vk ⊆ Vk+1, and⋃
k∈N Vk = V .

Proof. Let {Bk}k∈N be a standard enumeration of the ideal balls of S where Bk =
B(dmk

, qlk), and let E ⊆ N be a c.e. set such that V =
⋃
k∈E Bk. Let {B(di, rj)}i,j∈N

form a basis of µ-almost decidable sets, as shown to be computable by Lemma 2.15.
Consider the c.e. set

Fk := {(i, j) : δS(di, dmk
) + rj < qlk}. (5)

Because {di}i∈N is dense in S and {rj}j∈N is dense in the positive reals we have
for each k ∈ N that Bk =

⋃
(i,j)∈Fk

B(di, rj). In particular this implies that the set

F :=
⋃
k∈E Fk is a c.e. set with V =

⋃
(i,j)∈F B(di, rj). Let {(in, jn)}n∈N be a c.e.

enumeration of F and let Vk :=
⋃
n≤k B(din , rjn), which is almost decidable. By

construction, for each k, Vk ⊆ Vk+1, and
⋃
k∈N Vk = V . �

Using the notion of an almost decidable set, we have the following characterization
of computable measures.

Corollary 2.17. Let S be a computable metric space and let µ ∈ M1(S) be a
probability measure on S. Then µ is computable if the measure µ(A) of every µ-
almost decidable set A is a computable real, uniformly in A.

Proof. Let V be a c.e. open set of S. By Theorem 2.11, it suffices to show that
µ(V ) is a c.e. real, uniformly in V . By Lemma 2.16, we can compute a nested
sequence {Vk}k∈N of µ-almost decidable sets whose union is V . Because V is open,
µ(V ) = supk∈N µ(Vk). By hypothesis, µ(Vk) is a computable real for each k, and so
the supremum is a c.e. real, as desired. �
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Computable random variables have computable distributions.

Proposition 2.18 ([GHR10, Prop. 2.4.2]). Let X be a computable random variable
in a computable metric space S. Then its distribution is a computable point in the
computable metric space M1(S).

On the other hand, one can show that given a computable point µ inM1(S), one
can construct an i.i.d.-µ sequence of computable random variables in S.

3. Conditional Probabilities and Distributions

Informally, the conditional probability of an event B given an event A is the like-
lihood that the event B occurs, given the knowledge that the event A has occurred.

Definition 3.1 (Conditioning with respect to a single event). Let S be a measur-
able space and let µ ∈ M1(S) be a probability measure on S. Let A,B ⊆ S be
measurable sets, and suppose that µ(A) > 0. Then the conditional probability
of B given A, written µ(B|A), is defined by

µ(B|A) =
µ(B ∩A)

µ(A)
. (6)

Note that for any fixed measurable set A ⊆ S with µ(A) > 0, the function µ( · |A)
is a probability measure. This notion of conditioning is well-defined precisely when
µ(A) > 0, and so is insufficient for defining the conditional probability given the
event that a continuous random variable takes a particular value, as such an event
has measure zero.

We will often be interested in the case where B and A are measurable sets of the
form {Y ∈ D} and {X ∈ C}. In this case, we define the abbreviation

P{Y ∈ D | X ∈ C} := P
(
{Y ∈ D} | {X ∈ C}

)
. (7)

Again, this is well-defined when P{X ∈ C} > 0. As a special case, when C = {x}
is an atom, we obtain the notation

P{Y ∈ D | X = x}. (8)

The modern formulation of conditional probability is due to Kolmogorov [Kol33],
and gives a consistent solution to the problem of conditioning on the value of general
(and in particular, continuous) random variables. (See Kallenberg [Kal02, Chp. 6]
for a rigorous treatment.)

Definition 3.2 (Conditioning with respect to a random variable). Let X and Y be
random variables in measurable spaces S and T , respectively, and let B ⊆ T be
a measurable set. Then a measurable function P[Y ∈ B|X] from S to [0, 1] is (a
version of) the conditional probability of Y ∈ B given X when

P{X ∈ A, Y ∈ B} =

∫
A

P[Y ∈ B|X] dPX (9)

for all measurable sets A ⊆ S. Moreover, P[Y ∈ B|X] is uniquely defined up to a PX-
null set (i.e., almost surely unique) and so we may sensibly refer to the conditional
probability when we mean a generic element of the equivalence class of versions.
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Remark 3.3. It is also common to define a conditional probability given X as a
σ(X)-measurable random variable P that is the Radon-Nikodym derivative of the
measure P(· ∩ {Y ∈ B}) with respect to P, both viewed as measures on the σ-
algebra σ(X). (See Kallenberg [Kal02, Chp. 6] for such a construction.) However
there is a close relationship between these two definitions: In particular, there exists
a measure function h from S to [0, 1] such that P = h(X) a.s. We have taken h to be
our definition of the conditional probability as it is more natural to have a function
from S in the statistical setting. (We take the same tact when defining conditional
distributions.) In Propositions 6.5 and 6.10, we demonstrate that both definitions
of conditional probability admit noncomputable versions.

It is natural to want to consider not just individual conditional probabilities but
the entire conditional distribution P[Y ∈ · |X] of Y given X. In order to define
conditional distributions, we first recall the notion of a probability kernel. (For
more details, see, e.g., [Kal02, Ch. 3, 6].)

Definition 3.4 (Probability kernel). Let S and T be measurable spaces. A function
κ : S × BT → [0, 1] is called a probability kernel (from S to T ) when

(1) for every s ∈ S, the function κ(s, · ) is a probability measure on T ; and
(2) for every B ∈ BT , the function κ( · , B) is measurable.

It can be shown that κ is a probability kernel from S to T if and only if s 7→ κ(s, · )
is a measurable map from S to M1(T ) [Kal02, Lem. 1.40].

Definition 3.5 (Conditional distribution). Let X and Y be random variables in
measurable spaces S and T , respectively. A probability kernel κ is called a (regular)
version of the conditional distribution P[Y ∈ · |X] when it satisfies

P{X ∈ A,Y ∈ B} =

∫
A
κ(x,B) PX(dx), (10)

for all measurable sets A ⊆ S and B ⊆ T .

We will simply write P[Y|X] in place of P[Y ∈ · |X].

Definition 3.6. Let µ be a measure on a topological space S with open sets S.
Then the support of µ, written supp(µ), is defined to be the set of points x ∈ S
such that all open neighborhoods of x have positive measure, i.e.,

supp(µ) := {x ∈ S : ∀B ∈ S (x ∈ B =⇒ µ(B) > 0)}. (11)

Given any two versions of a conditional distribution, they need only agree almost
everywhere. However, they will agree at points of continuity in the support:

Lemma 3.7. Let X and Y be random variables in topological spaces S and T , respec-
tively, and suppose that κ1, κ2 are versions of the conditional distribution P[Y|X].
Let x ∈ S be a point of continuity of both of the maps x 7→ κi(x, · ) for i = 1, 2. If
x ∈ supp(PX), then κ1(x, · ) = κ2(x, · ).

Proof. Fix a measurable set A ⊆ Y and define g( · ) := κ1( · , A)−κ2( · , A). We know
that g = 0 PX-a.e., and also that g is continuous at x. Assume, for the purpose of



ON THE COMPUTABILITY OF CONDITIONAL PROBABILITY 14

contradiction, that g(x) = ε > 0. By continuity, there is an open neighborhood B
of x, such that g(B) ∈ ( ε2 ,

3ε
2 ). But x ∈ supp(PX), hence PX(B) > 0, contradicting

g = 0 PX-a.e. �

When conditioning on a discrete random variable, i.e. one whose image is a
discrete set, it is well known that a version of the conditional distribution can be
built by elementary conditioning with respect to single events.

Lemma 3.8. Let X and Y be random variables on measurable spaces S and T ,
respectively. Suppose that X is a discrete random variable with support R ⊆ S, and
let ν be an arbitrary probability measure on T . Define the function κ : S×BT → [0, 1]
by

κ(x,B) := P{Y ∈ B | X = x} (12)

for all x ∈ R and κ(x, · ) = ν( · ) for x 6∈ R. Then κ is a version of the conditional
distribution P[Y|X].

Proof. The function κ, given by

κ(x,B) := P{Y ∈ B | X = x} (13)

for all x ∈ R and κ(x, · ) = ν( · ) for x 6∈ R, is well-defined because P{X = x} > 0 for
all x ∈ R, and so the right hand side of Equation (13) is well-defined. Furthermore,
P{X ∈ R} = 1 and so κ is characterized by Equation (13) for PX-almost all x.
Finally, for all measurable sets A ⊆ S and B ⊆ T , we have∫

A
κ(x,B) PX(dx) =

∑
x∈R∩A

P{Y ∈ B | X = x}P{X = x} (14)

=
∑

x∈R∩A
P{Y ∈ B, X = x} (15)

= P{Y ∈ B, X ∈ A}, (16)

and so κ is a version of the conditional distribution P[Y|X]. �

4. Computable Conditional Probabilities and Distributions

We begin by demonstrating the computability of elementary conditional proba-
bility given positive-measure events that are almost decidable. We then return to
the abstract setting and lay the foundations for the remainder of the paper.

Lemma 4.1 ([GHR10, Prop. 3.1.2]). Let (S, µ) be a computable probability space
and let A be an almost decidable subset of S satisfying µ(A) > 0. Then µ( · |A) is a
computable probability measure.

Proof. By Corollary 2.17, it suffices to show that µ(B∩A)
µ(A) is computable for an al-

most decidable set B. But then B ∩ A is almost decidable and so its measure, the
numerator, is a computable real. The denominator is likewise the measure of an
almost decidable set, hence a computable real. Finally, the ratio of two computable
reals is computable. �



ON THE COMPUTABILITY OF CONDITIONAL PROBABILITY 15

Conditioning in the abstract setting is more involved. Having defined the abstract
notion of conditional probabilities and conditional distributions in Section 3, we
now define notions of computability for these objects, starting with conditional
distributions.

Definition 4.2 (Computable probability kernel). Let S and T be computable metric
spaces and let κ : S ×BT → [0, 1] be a probability kernel from S to T . Then we say
that κ is a computable (probability) kernel when the map φκ : S → M1(T )
given by φκ(s) := κ(s, · ) is a computable function. Similarly, we say that κ is
computable on a subset D ⊆ S when φκ is computable on D.

The following correspondence will allow us to derive other characterizations of
computable probability kernels. The proof, however, will use that fact that given
a sequence of ideal balls B(d1, q1), . . . , B(dn, qn) and an ideal ball B(d∗, q∗) we can
semi-decide when B(d∗, q∗) ⊆

⋃
i≤nB(di, qi) (uniformly in the indexes of the ideal

balls).
Henceforth, we will make the assumption that our computable metric spaces have

the property. This holds for all the specific spaces (Rk,{0, 1}, {0, 1}∞, N, etc.) that
we consider.

Proposition 4.3. Let (T, δ,D) be a computable metric space. Let T be the collection
of sets of the form

PA,q = {µ ∈M1(T ) : µ(A) > q} (17)

where A is a c.e. open subset of T and q is a rational. Then the elements of T are
c.e. open subsets of M1(T ) uniformly in A and q.

Proof. Note that T is a subbasis for the weak topology induced by the Prokhorov
metric (see [Sch07a, Lem. 3.2]).

Let P = PA,q for a rational q and c.e. open subset A.
We can write A =

⋃
n∈NB(dn, rn) for a sequence (computable uniformly in A) of

ideal balls in T with centers dn ∈ DT and rational radii rn. Define
Am :=

⋃
n≤mB(dn, rn). Then Am ⊆ Am+1 and A =

⋃
mAm. Writing

Pm := {µ ∈M1(T ) : µ(Am) > q}, (18)

we have P =
⋃
m Pm. In order to show that P is c.e. open uniformly in q and A, it

suffices to show that Pm is c.e. open, uniformly in q, m and A.
Let DP be the ideal points of M1(T ) (see Section 2.4), let ν ∈ DP , and let R be

the finite set on which it concentrates. Gács [Gác05, Prop. B.17] characterizes the
ideal ball E centered at ν

µ(Cε) > ν(C)− ε (19)

for all subsets C ⊆ R, where Cε =
⋃
t∈C B(t, ε).

It is straightforward to show that E ⊆ Pm if and only if ν(Cm) ≥ q + ε, where

Cm := {t ∈ R : B(t, ε) ⊆ Am}. (20)
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Note that Cm is a decidable subset of R (uniformly in m, A, and E) and that ν(Cm)
is a rational and so we can decide whether E ⊆ Pm, showing that Pm is c.e. open,
uniformly in q, m, and A. �

Recall that a lower semicomputable function from a computable metric space to
[0, 1] is one for which the preimage of (q, 1] is c.e. open, uniformly in rationals q.
Furthermore, we say that a function f from a computable metric space S to [0, 1]
is lower semicomputable on D ⊆ S when there is a uniformly computable sequence
{Uq}q∈Q of c.e. open sets such that

f−1
[
(q, 1]

]
∩D = Uq ∩D. (21)

We can also interpret a computable probability kernel κ as a computable map
sending each c.e. open set A ⊆ T to a lower semicomputable function κ( · , A).

Lemma 4.4. Let S and T be computable metric spaces, let κ be a probability kernel
from S to T , and let D ⊆ S. If φκ is computable on D then κ( · , A) is lower
semicomputable on D uniformly in the c.e. open set A.

Proof. Let q ∈ (0, 1) be a rational, and let A be a c.e. open set. Define I := (q, 1].
Then κ( · , A)−1[I] = φ−1

κ [P ], where

P := {µ ∈M1(T ) : µ(A) > q}. (22)

This is an open set in the weak topology induced by the Prokhorov metric (see
[Sch07a, Lem. 3.2]), and by Lemma 4.3, P is c.e. open.

By the computability of φκ, there is a c.e. open set V , uniformly computable in
q and A such that

κ( · , A)−1[I] ∩D = φ−1
κ [P ] ∩D = V ∩D, (23)

and so κ( · , A) is lower semicomputable on D, uniformly in A. �

In fact, when A ⊆ T is a decidable set (i.e., when A and T \A are both c.e. open),
κ( · , A) is a computable function.

Corollary 4.5. Let S and T be computable metric spaces, let κ be a probability
kernel from S to T computable on a subset D ⊆ S, and let A ⊆ T be a decidable
set. Then κ( · , A) : S → [0, 1] is computable on D.

Proof. By Lemma 4.4, κ( · , A) and κ( · , T \A) are lower semicomputable on D. But
κ(x,A) = 1 − κ(x, T \ A) for all x ∈ D, and so κ( · , A) is upper semicomputable,
and therefore computable, on D. �

Although a conditional distribution may have many different versions, their com-
putability as probability kernels does not differ (up to a change in domain by a null
set).

Lemma 4.6. Let X and Y be computable random variables on computable metric
spaces S and T , respectively, and let κ be a version of a conditional distribution
P[Y|X] that is computable on some PX-measure one set. Then any version of P[Y|X]
is also computable on some PX-measure one set.
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Proof. Let κ be a version that is computable on a PX-measure one set D, and let κ′

be any other version. Then Z := {s ∈ S : κ(s, · ) 6= κ′(s, · )} is a PX-null set, and
κ = κ′ on D \ Z. Hence κ′ is computable on the PX-measure one set D \ Z. �

This observation motivates the following definition of computability for condi-
tional distributions.

Definition 4.7 (Computable conditional distributions). Let X and Y be computable
random variables on computable metric spaces S and T , respectively, and let κ be
a version of the conditional distribution P[Y|X]. We say that P[Y|X] is computable
when κ is computable on a PX-measure one subset of S.

Note that this definition is analogous to our Definition 2.9 of a computable random
variable. In fact, if κ is a version of a computable conditional distribution P[Y|X],
then κ(X, · ) is a (σ(X)-measurable) computable random probability measure (i.e.,
a probability-measure-valued random variable).

Intuitively, a conditional distribution is computable when for some (and hence for
any) version κ there is a program that, given as input a representation of a point
s ∈ S, outputs a representation of the measure φκ(s) = κ(s, · ) for PX-almost all
inputs s.

Suppose that P[Y|X] is computable, i.e., there is a version κ for which the map
φκ is computable on some PX-measure one set S′ ⊆ S. As noted in Definition 4.2,
we will often abuse notation and say that κ is computable on S′. The restriction
of φκ to S′ is necessarily continuous (under the subspace topology on S′). We say
that κ is PX-almost continuous when the restriction of φκ to some PX-measure
one set is continuous. Thus when P[Y|X] is computable, there is some PX-almost
continuous version.

We will need the following lemma in the proof of Lemma 6.3, but we postpone
the proof until Section 8.2.

Lemma 4.8. Let X and Y be random variables on metric spaces S and T , respec-
tively, and let R ⊆ S. If a conditional density pX|Y(x|y) of X given Y is continuous
on R× T , positive, and bounded, then there is a version of the conditional distribu-
tion P[Y|X] that is continuous on R. In particular, if R is a PX-measure one subset,
then there is a PX-almost continuous version.

We now define computability for conditional probability.

Definition 4.9 (Computable conditional probability). Let X and Y be computable
random variables in computable metric spaces S and T , respectively, and let B ⊆ T
be a PY-almost decidable set. We say that the conditional probability P[Y ∈ B|X]
is computable when it is computable (when viewed as a function from S to [0, 1])
on a PX-measure one set.

In Section 5 we describe a pair of computable random variables X,Y for which
P[Y|X] is not computable, by virtue of no version being PX-almost continuous. In
Section 6 we describe a pair of computable random variables X,Y for which there is
a PX-almost continuous version of P[Y|X], but still no version that is computable
on a PX-measure one set.
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5. Discontinuous Conditional Distributions

Our study of the computability of conditional distributions begins with a descrip-
tion of the following roadblock: a conditional distribution need not have any version
that is continuous or even almost continuous (in the sense described in Section 4).
This rules out computability.

We will work with the standard effective presentations of the spaces R, N, {0, 1},
as well as product spaces thereof, as computable metric spaces. For example, we
will use R under the Euclidean metric, along with the ideal points Q under their
standard enumeration.

Recall that a random variable C is a Bernoulli(p) random variable, or equiva-
lently, a p-coin, when P{C = 1} = 1−P{C = 0} = p. We call a 1

2 -coin a fair coin.
A random variable N is geometric when it takes values in N = {0, 1, 2, . . . } and
satisfies

P{N = n} = 2−(n+1), for n ∈ N. (24)

A random variable that takes values in a discrete set is a uniform random variable
when it assigns equal probability to each element. A continuous random variable U
on the unit interval is uniform when the probability that it falls in the subinterval
[`, r] is r− `. It is easy to show that the distributions of these random variables are
computable.

Let C, U, and N be independent computable random variables, where C is a fair
coin, U is a uniform random variable on [0, 1], and N is a geometric random variable.
Fix a computable enumeration {ri}i∈N of the rational numbers (without repetition)
in (0, 1), and consider the random variable

X :=

{
U, if C = 1;

rN, otherwise.
(25)

It is easy to verify that X is a computable random variable.

Proposition 5.1. Every version of the conditional distribution P[C|X] is discontin-
uous everywhere on every PX-measure one set. In particular, every version of the
conditional probability P[C = 0|X] is discontinuous everywhere on every PX-measure
one set.

Proof. Note that P{X rational} = 1
2 and, furthermore, P{X = rk} = 1

2k+2 > 0.
Therefore, any two versions of the conditional distribution P[C|X] must agree on all
rationals in [0, 1]. In addition, because PU � PX, i.e.,

P{U ∈ A} > 0 =⇒ P{X ∈ A} > 0 (26)

for all measurable sets A ⊆ [0, 1], any two versions must agree on a Lebesgue-measure
one set of the irrationals in [0, 1]. An elementary calculation shows that

P{C = 0 | X rational} = 1, (27)

while

P{C = 0 | X irrational} = 0. (28)
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Therefore, all versions κ of P[C|X] satisfy, for PX-almost all x,

κ(x, {0}) =

{
1, x rational;

0, x irrational,
(29)

where the right hand side, considered as a function of x, is the so-called Dirichlet
function, a nowhere continuous function.

Suppose some version of the conditional probability x 7→ κ(x, {0}) were continu-
ous at a point y on a PX-measure one set R. Then there would exist an open interval
I containing y such that the image of I ∩R contains 0 or 1, but not both. However,
R must contain all rationals in I and almost all irrationals in I. Furthermore, the
image of every rational in I ∩ R is 1, and the image of almost every irrational in
I ∩R is 0, a contradiction. �

Discontinuity is a fundamental obstacle to computability, but many conditional
probabilities do admit continuous versions, and we can focus our attention on such
settings, to rule out this objection. In particular, we might hope to be able to
compute a conditional distribution of a pair of computable random variables when
there is some version that is almost continuous or even continuous. However we will
show that even this is not possible in general.

6. Noncomputable Almost Continuous Conditional Distributions

In this section, we construct a pair of random variables (X,N) that is computable,
yet whose conditional distribution P[N|X] is not computable, despite the existence
of a PX-almost continuous version.

Let Mn denote the nth Turing machine, under a standard enumeration, and let
h : N→ N∪{∞} be the map given by h(n) =∞ if Mn does not halt (on input 0) and
h(n) = k if Mn halts (on input 0) at the kth step. Let H = {n ∈ N : h(n) <∞} be
the indices of those Turing machines that halt (on input 0). We now use h to define
a pair (N,X) of computable random variables such that H is computable from the
conditional distribution of N given X.

Let N be a computable geometric random variable, C a computable 1
3 -coin, and

U and V both computable uniform random variables on [0, 1], all mutually inde-
pendent. Let bxc denote the greatest integer y ≤ x. Note that b2kVc is uniformly
distributed on {0, 1, 2, . . . , 2k − 1}. Consider the derived random variables

Xk :=
2b2kVc+ C + U

2k+1
(30)

for k ∈ N. Almost surely, the limit X∞ := limk→∞ Xk exists and satisfies X∞ = V a.s.
Finally, we define X := Xh(N).

Proposition 6.1. The random variable X is computable.

Proof. Because U and V are computable and a.s. nondyadic, their (a.s. unique)
binary expansions {Un : n ∈ N} and {Vn : n ∈ N} are themselves computable
random variables in {0, 1}, uniformly in n.
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For each k ≥ 0, define the random variable

Dk =


Vk, h(N) > k;

C, h(N) = k;

Uk−h(N)−1, h(N) < k.

(31)

By simulating MN for k steps, we can decide whether h(N) is less than, equal to, or
greater than k. Therefore the random variables {Dk}k≥0 are computable, uniformly
in k. We now show that, with probability one, {Dk}k≥0 is the binary expansion of
X, thus showing that X is itself a computable random variable.

There are two cases to consider:
First, conditioned on h(N) = ∞, we have that Dk = Vk for all k ≥ 0. In fact,

X = V when h(N) =∞, and so the binary expansions match.
Condition on h(N) = m and let D denote the computable random real whose

binary expansion is {Dk}k≥0. We must then show that D = Xm a.s. Note that

b2mXmc = b2mVc =

m−1∑
k=0

2m−1−kVk = b2mDc, (32)

and thus the binary expansions agree for the first m digits. Finally, notice that
2m+1Xm − 2b2mXmc = C + U, and so the next binary digit of Xm is C, followed by
the binary expansion of U, thus agreeing with D for all k ≥ 0. �

We now show that P[N|X] is not computable, despite the existence of a PX-almost
continuous version of P[N|X]. We begin by characterizing the conditional density of
X given N.

Lemma 6.2. For each k ∈ N ∪ {∞}, the distribution of Xk admits a density pXk

with respect to Lebesgue measure on [0, 1], where, for all k < ∞ and PX-almost all
x,

pXk
(x) =

{
4
3 , b2

k+1xc even;
2
3 , b2

k+1xc odd,
(33)

and pX∞(x) = 1.

Proof. We have X∞ = V a.s. and so the constant function taking the value 1 is the
density of X∞ with respect to Lebesgue measure on [0, 1].

Let k ∈ N. With probability one, the integer part of 2k+1Xk is 2b2kVc+ C while
the fractional part is U. Therefore, the distribution of 2k+1Xk (and hence Xk) admits
a piecewise constant density with respect to Lebesgue measure.

In particular, b2k+1Xkc ≡ C (mod 2) almost surely and 2b2kVc is independent of
C and uniformly distributed on {0, 2, . . . , 2k+1 − 2}. Therefore,

P{b2k+1Xkc = `} = 2−k ·

{
2
3 , ` even;
1
3 , ` odd,

(34)
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Figure 1. A visualization of (X,Y), where Y is uniformly dis-
tributed and N = b− log2 Yc. Regions that appear (at low resolution)
to be uniform can suddenly be revealed (at higher resolutions) to be
patterned. Deciding whether the pattern is in fact uniform (or below
the resolution of this printer/display) is tantamount to solving the
halting problem, but it is possible to sample from this distribution
nonetheless. Note that this is not a plot of the density, but instead
a plot where the darkness of each pixel is proportional to its measure.

for every ` ∈ {0, 1, . . . , 2k+1−1}. It follows immediately that the density p of 2k+1Xk
with respect to Lebesgue measure on [0, 2k+1] is given by

p(x) = 2−k ·

{
2
3 , bxc even;
1
3 , bxc odd.

(35)

and so the density of Xk is obtained by rescaling: pXk
(x) = 2k+1 · p(2k+1x). �

As Xk admits a density with respect to Lebesgue measure on [0, 1] for all k ∈
N∪{∞}, it follows that the conditional distribution of X given N admits a conditional
density pX|N (with respect to Lebesgue measure on [0, 1]) given by

pX|N(x|n) = pXh(n)
(x). (36)

Each of these densities is positive, bounded, and continuous on the nondyadic re-
als, and so they can be combined to form a PX-almost continuous version of the
conditional distribution.

Lemma 6.3. There is a PX-almost continuous version of P[N|X].
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Proof. By Bayes’ rule (Lemma 8.6), the probability kernel κ given by

κ(x,B) :=

∑
n∈B pX|N(x|n) ·P{N = n}∑
n∈N pX|N(x|n) ·P{N = n}

for B ⊆ N (37)

is a version of the conditional distribution P[N|X]. Moreover, pX|N is positive,
bounded and continuous on R×N, where R is the PX-measure one set of nondyadic
reals in the unit interval. It follows from Lemma 4.8 that κ is PX-almost continu-
ous. �

Lemma 6.4. Let κ be a version of P[N|X]. For all m,n ∈ N and PX-almost all x,

τm,n(x) := 2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2 , 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3 ,

3
4 ,

4
3 ,

3
2}, otherwise.

Proof. Let m,n ∈ N. By (37) and then (36), for PX-almost all x,

τm,n(x) = 2m−n ·
pX|N(x|m) ·P{N = m}
pX|N(x|n) ·P{N = n}

=
pXh(m)

(x)

pXh(n)
(x)

.

By Lemma 6.3, we have pX∞(x) = 1 and pXk
(x) ∈ {2

3 ,
4
3} for all k < ∞ and PX-

almost all x. The result follows by considering all possible combinations of values
for each regime of values for h(n) and h(m). �

Despite the computability of N and X, conditioning on X leads to noncomputabil-
ity.

Proposition 6.5. For all k, the conditional probability P[N = k|X] is not lower
semicomputable (hence not computable) on any measurable subset R ⊆ [0, 1] where
PX(R) > 2

3 .

Proof. Choose n to be the index of some Turing machine Mn that halts (on input 0),
i.e., for which h(n) <∞, let m ∈ N, let κ be a version of the conditional distribution,
let τ = τm,n be as in Lemma 6.4, and let V<∞ and V∞ be disjoint c.e. open sets that
contain {1

2 , 1, 2} and {2
3 ,

3
4 ,

4
3 ,

3
2}, respectively. By Lemma 6.4, when h(m) <∞, we

have PX(τ−1[V<∞]) = 1. Likewise, when h(m) =∞, we have PX(τ−1[V∞]) = 1.
Suppose that for some k that P[N = k|X] were lower semicomputable on some set

R satisfying PX(R) > 2
3 . Note that the numerator of Equation (37) is computable

on the nondyadics, uniformly in B = {k}, and the denominator is independent of
B. Therefore, because P[N = k|X] = κ(·, {k}) PX-a.e., it follows that P[N = k|X]
is lower semicomputable on R, uniformly in k. But then, uniformly in k, we have
that P[N = k|X]) is computable on R because {k} is a decidable subset of N and

P[N = k|X] = 1−
∑

j 6=k P[N = j|X] a.s. (38)

Therefore, τ is computable on R, uniformly in m.
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It follows that there exist c.e. open sets U<∞ and U∞, uniformly in m, such that
τ−1[V<∞]∩R = U<∞∩R and thus PX(U<∞∩R) = PX(τ−1[V<∞]∩R), and similarly
for V∞ and U∞.

If h(m) <∞, then PX(τ−1[V<∞]) = 1 and thus

PX(U<∞) ≥ PX(U<∞ ∩R) = PX(τ−1[V<∞] ∩R) = PX(R) >
2

3
. (39)

Similarly, h(m) =∞ implies that PX(U∞) > 2
3 . Therefore, at least one of

PX(U<∞) > 2
3 or PX(U∞) > 2

3 (40)

holds.
As V<∞ ∩ V∞ = ∅, we have U<∞ ∩ U∞ ∩ R = ∅ and so PX(U<∞ ∩ U∞) < 1− 2

3 .

Thus, PX(U<∞) + PX(U∞) ≤ 1 + PX(U<∞ ∩U∞) < 1 + (1− 2
3) = 4

3 and so we have

that at most one (and hence exactly one) of (i) PX(U<∞) > 2
3 and h(m) < ∞ or

(ii) PX(U∞) > 2
3 and h(m) =∞.

But PX(U<∞) and PX(U∞) are c.e. reals, uniformly in m, and so we can com-
putably distinguish between cases (i) and (ii), and thus decide whether or not
h(m) < ∞, or equivalently, whether or not m ∈ H, uniformly in m. But H is not
computable and so we have a contradiction. �

Corollary 6.6. The conditional distribution P[N|X] is not computable.

Proof. As {n} is a decidable subset of N, uniformly in n, it follows from Corollary 4.5
that the conditional probability P[N = n|X] is computable on a measure one set
when the conditional distribution is computable. By Proposition 6.5, the former is
not computable, and so the latter is not computable. �

Note that these proofs show that not only is the conditional distribution P[N|X]
noncomputable, but in fact it computes the halting set H in the following sense.
Although we have not defined the notion of an oracle that encodes P[N|X], one
could make this concept precise using, e.g., infinite strings in the Type-2 Theory
of Effectivity (TTE). However, despite not having a definition of computability
from this distribution, we can easily relativize the notion of computability for the
distribution. In particular, an analysis of the above proof shows that if P[N|X] is
A-computable for an oracle A ⊆ N, then A computes the halting set, i.e., A ≥T ∅′.

Computable operations map computable points to computable points, and so we
obtain the following consequence.

Theorem 6.7. The operation (X,Y) 7→ P[Y|X] of conditioning a pair of real-valued
random variables is not computable, even when restricted to pairs for which there
exists a PX-almost continuous version of the conditional distribution.

Conditional probabilities are often thought about as generic elements of L1(PX)
equivalence classes (i.e., functions that are equivalent up to PX-null sets.) However,
Proposition 6.5 also rules out the computability of conditional probabilities in the
weaker sense of so-called L1(PX)-computability.
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Definition 6.8 (L1(µ) computability [PER84]). Let µ be a computable measure
on [0, 1]. Then a function f ∈ L1(µ) is said to be L1(µ)-computable if there is a
computable sequence of rational polynomials fn such that

‖f − fn‖1 =

∫
|f − fn|dµ ≤ 2−n. (41)

If we let δ1(f, g) =
∫
|f − g|dµ then we can turn L1(µ) into a computable metric

space by quotienting out by the equivalence relation δ1(f, g) = 0 and letting the
dense D1 consist of those equivalence classes containing a polynomial with rational
coefficients. A function f is then L1(µ)-computable if and only if its equivalence
class is a computable point in L1(µ) considered as a computable metric space.

The following result is an easy consequence of the fact that L1(µ)-computable
functions are computable “in probability”.

Proposition 6.9. For all n ∈ N, the conditional probability P[N = n|X] is not
L1(PX)-computable.

Proof. Let n ∈ N. By Proposition 6.5, the conditional probability P[N = n|X] is not
computable on any Borel set R such that PX(R) > 2

3 . On the other hand, a result

by Hoyrup and Rojas [HR09b, Thm. 3.1.1] implies that a function f is L1(PX)-
computable only if f is computable on some PX-measure 1− 2−r set, uniformly in
r. Therefore, P[N = n|X] is not L1(PX)-computable. �

In fact, this result can be strengthened to a statement about the noncomputability
of each conditional probability P[N = n|X] when viewed as σ(X)-measurable random
variables (Remark 3.3), or, equivalently, σ(X)-measurable Radon-Nikodym deriva-
tives. (See Kallenberg [Kal02, Chp. 6] for a discussion of the relationship between
conditional expectation, Radon-Nikodym derivatives and conditional probability.)
In this form, we tighten a result of Hoyrup and Rojas [HR11, Prop. 3].

Proposition 6.10. Let n ∈ N, and then consider the conditional probability
P[N = n|X] as a σ(X)-measurable Radon-Nikodym derivative ηn : {0, 1}∞ → [0, 1]
of P(· ∩ {N = n}) with respect to P. Then ηn is not lower semicomputable (and
hence not computable) on any measurable subset S ⊆ {0, 1}∞ where P(S) > 2

3 . In

particular, ηn is not L1(P)-computable.

Proof. Let κ be a version of the conditional distribution P[N|X], and, for n ∈ N, let
ηn be defined as above. In particular, note that, for all n ∈ N and P-almost all ω,

ηn(ω) = κ(X(ω), {n}). (42)

In particular, this implies that, for all n,m ∈ N and P-almost all ω,

2m−n · ηm(ω)

ηn(ω)
∈


{1

2 , 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3 ,

3
4 ,

4
3 ,

3
2}, otherwise.

(43)

Using Equations (37), (42), and (43), one can express ηn as a ratio whose numerator
is computable on a P-measure one set, uniformly in n, and whose denominator is
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positive for P-almost all ω and independent of n. One can then show, along the
same lines as Proposition 6.5, that ηn is not lower semicomputable on any set S
as defined above, for otherwise we could decide H. This then rules out the L1(P)-
computability of ηn. �

It is natural to ask whether this construction can be extended to produce a pair of
computable random variables whose conditional distribution is noncomputable but
has an everywhere continuous version. We provide such a strengthening in Section 7.

Despite these results, many important questions remain: How badly noncom-
putable is conditioning, even restricted to these continuous settings? In what re-
stricted settings is conditioning computable? In Section 8, we begin to address the
latter of these.

7. Noncomputable Everywhere Continuous Conditional Distributions

As we saw in Section 5, discontinuity poses a fundamental obstacle to the com-
putability of conditional probabilities. As such, it is natural to ask whether we
can construct a pair of random variables (Z,N) that is computable and admits an
everywhere continuous version of the conditional distribution P[N|Z], which is itself
nonetheless not computable. In fact, this is possible using a construction similar to
that of (X,N) in Section 6.

In particular, if we think of the construction of the kth bit of X as an iterative
process, we see that there are two distinct stages. During the first stage, which
occurs so long as k < h(N), the bits of X simply mimic those of the uniform random
variable V. Then during the second stage, once k ≥ h(N), the bits mimic that of
1
2(C + U).

Our construction of Z will differ in the second stage, where the bits of Z will
instead mimic those of a random variable S specially designed to smooth out the
rough edges caused by the biased coin C, while still allowing us to encode the
halting set. In particular, S will be absolutely continuous and will have an infinitely
differentiable density.

We now make the construction precise. Let N, U, V and C be as in the first
construction. We begin by defining several random variables from which we will
construct S, and then Z.

Lemma 7.1. There is a random variable F in [0, 1] with the following properties:

(1) F is computable.
(2) PF admits a density pF with respect to Lebesgue measure (on [0, 1]) that is

infinitely differentiable everywhere.
(3) pF(0) = 2

3 and pF(1) = 4
3 .

(4)
dn+
dxn pF(0) =

dn−
dxn pF(1) = 0, for all n ≥ 1 (where

dn−
dxn and

dn+
dxn are the left and

right derivatives respectively).

(See Figure 2 for one such random variable.) Let F be as in Lemma 7.1, and
independent of all earlier random variables mentioned. Note that F is almost surely
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Figure 2. (left) The graph of the function defined by f(x) =
exp{− 1

1−x2 }, for x ∈ (−1, 1), and 0 otherwise, a C∞ bump func-

tion whose derivatives at ±1 are all 0. (right) A density

p(y) = 2
3

(
Φ(2y−1)

Φ(1) + 1
)
, for y ∈ (0, 1), of a random variable satis-

fying Lemma 7.1, where Φ(y) =
∫ y
−1 exp{− 1

1−x2 } dx is the integral of
the bump function.

nondyadic and so the r-th bit Fr of F is a computable random variable, uniformly
in r.

Let D be a computable random variable, independent of all earlier random vari-
ables mentioned, and uniformly distributed on {0, 1, . . . , 7}. Consider

S =
1

8
×


F, if D = 0;

4 + (1− F), if D = 4;

4C + (D mod 4) + U, otherwise.

(44)

It is clear that S is itself a computable random variable, and straightforward to
show that

(i) PS admits an infinitely differentiable density pS with respect to Lebesgue
measure on [0, 1]; and

(ii) For all n ≥ 0, we have
dn+
dxn pS(0) =

dn−
dxn pS(1).

(For a visualization of the density pS see Figure 3.)
We say a real x ∈ [0, 1] is valid for PS if x ∈ (1

8 ,
1
2) ∪ (5

8 , 1). In particular,
when D 6∈ {0, 4}, then S is valid for PS. The following are then straightforward
consequences of the construction of S and the definition of valid points:

(iii) If x is valid for PS then pS(x) ∈ {2
3 ,

4
3}.

(iv) The PS-measure of points valid for PS is 3
4 .

Next we define, for every k ∈ N, the random variables Zk mimicking the construction
of Xk. Specifically, for k ∈ N, define

Zk :=
b2kVc+ S

2k
, (45)
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Figure 3. Graph of the density of S, when constructed from F as
given in Figure 2.

and let Z∞ := limk→∞ Zk = V a.s. Then the nth bit of Zk is

(Zk)n =

{
Vn, n < k;

Sn−k, n ≥ k
a.s. (46)

For k < ∞, we say that x ∈ [0, 1] is valid for PZk
if the fractional part of 2kx is

valid for PS, and we say that x is valid for PZ∞ for all x. Let Ak be the collection of
x valid for PZk

, and let A∞ = [0, 1]. It is straightforward to verify that PZ(Ak) ≥ 9
16

for all k <∞, and 1 for k =∞.
It is also straightforward to show from (i) and (ii) above that PZk

admits an
infinitely differentiable density pZk

with respect to Lebesgue measure on [0, 1].
To complete the construction, we define Z := Zh(N). The following results are

analogous to those in the almost continuous construction:

Lemma 7.2. The random variable Z is computable.

Lemma 7.3. There is an everywhere continuous version of P[N|Z].

Proof. By construction, the conditional density of Z is everywhere continuous, bounded,
and positive. The result follows from Lemma 4.8 for R = [0, 1]. �

Lemma 7.4. Let κ be a version of the conditional distribution P[N|Z]. For all
m,n ∈ N and PZ-almost all x, if x is valid for PZh(n)

and PZh(m)
then

τm,n(x) := 2m−n · κ(x, {m})
κ(x, {n})

∈


{1

2 , 1, 2}, h(n), h(m) <∞;

{1}, h(n) = h(m) =∞;

{2
3 ,

3
4 ,

4
3 ,

3
2}, otherwise.

Proposition 7.5. For all k, the conditional probability P[N = k|Z] is not lower
semicomputable (hence not computable) on any measurable subset R ⊆ [0, 1] where
PZ(R) > 23

24 .
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Proof. Choose n to be the index of a Turing machine Mn that does not halt (on input
0) so that h(n) =∞, let m ∈ N, let κ be a version of the conditional distribution, let
τ = τm,n be defined as in Lemma 7.4, and let V<∞ and V∞ be disjoint c.e. open sets
containing the points {2

3 ,
3
4 ,

4
3 ,

3
2} and {1}, respectively. Notice that all x ∈ [0, 1] are

valid for PZh(n)
= PZ∞ and so Ah(n) ∩ Ah(m) = Ah(m). Therefore, by Lemma 7.4,

when h(m) < ∞, we have PZ(τ−1[V<∞]) ≥ PZ(Ah(m)) ≥ 9
16 . On the other hand,

when h(m) =∞, we have PZ(τ−1[V∞]) = PZ(A∞) = 1. The remainder of the proof
is similar to that of Proposition 6.5, replacing X with Z, replacing 2

3 with 23
24 , and

noting, e.g., that PZ(τ−1[V<∞]∩R) > 9
16 −

1
24 when h(m) <∞. In particular, were

P[N = k|Z] lower semicomputable on R, we could computably distinguish whether
or not m ∈ H, uniformly in m, which is a contradiction. �

As before, it follows immediately that P[N|Z] is not computable. It is possible to
carry on the same development, showing the non-computability of the conditional
probabilities as elements in L1(PX) and L1(P) For simplicity, we state the following
strengthening of Theorem 6.7.

Theorem 7.6. Let X and Y be computable real-valued random variables. Then
operation (X,Y) 7→ P[X|Y] of conditioning a pair of real-valued random variables is
not computable, even when restricted to pairs for which there exists an everywhere
continuous version of the conditional distribution.

8. Positive Results

We now consider situations in which we can compute conditional distributions.
Probabilistic methods have been widely successful in many settings, and so it is
important to understand situations in which conditional inference is possible. We
begin with the setting of discrete random variables.

8.1. Discrete Random Variables. A very common situation is that in which we
condition with respect to a random variable taking values in a discrete set. As we
will see, conditioning is always possible in this setting, as it reduces to the elementary
notion of conditional probability with respect to single events.

Lemma 8.1 (Conditioning on a discrete random variable). Let X and Y be com-
putable random variables in computable metric spaces S and T , respectively, where
S is a finite or countable and discrete set. Then the conditional distribution P[Y|X]
is computable, uniformly in X and Y.

Proof. Let κ be a version of the conditional distribution P[Y|X], and define
S+ := supp(PX) = {x ∈ S : PX{x} > 0}. We have PX(S+) = 1, and so, by
Lemma 3.8, κ is characterized by the equations

κ(x, ·) = P{Y ∈ · | X = x} =
P{Y ∈ · , X = x}

P{X = x}
, x ∈ S+. (47)

Let B ⊆ T be an PY-almost decidable. Because {x} is decidable, {x}×B is P(X,Y)-
almost decidable, and so the numerator is a computable real, uniformly in x ∈ S+

and B. Taking B = T , we see that the denominator, and hence the ratio is also
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computable, uniformly in x ∈ S+ and B. Thus, by Corollary 2.17, x 7→ κ(x, · ) is
computable on a PX-measure one set. �

Note that one could provide an alternative proof using the “rejection sampling”
method, which is used to define the semantics of conditioning on discrete random
variables in several probabilistic programming languages. This could, for example,
be formalized by using least fixed points or unbounded search.

A related situation is one where a computable random variable X concentrates on
a finite or countable subset of a computable metric space. In this case, Equation (47)
is well-defined and characterizes every version of the conditional distribution, but the
event {X = x}, for x ∈ supp(PX), is not decidable. However, if the countable subset
is discrete, then each such event is almost decidable. In order to characterize the
computability of conditioning in this setting, we first define a notion of computability
for discrete subsets of computable metric spaces.

Definition 8.2 (Computably discrete set). Let S be a computable metric space.
We say that a (finite or countably infinite) subset D ⊆ S is a computably discrete
subset when there exists a function f : S → N that is computable and injective on
D. We call f the witness to the computable discreteness of D.

The following result is an easy consequence of the definition of computably dis-
crete subsets and the computability of conditional distributions given discrete ob-
servations.

Lemma 8.3. Let X and Y be computable random variables in computable metric
spaces S and T , respectively, let D ⊆ S be a computable discrete subset with wit-
ness f , and assume that X ∈ D a.s. Then the conditional distribution P[Y|X] is
computable, uniformly in X, Y and (the witness for) f .

Proof. Let κ be a version of the conditional distribution of P[Y|X] and let κf be a
version of the conditional distribution of P[Y|f(X)]. Then, for x ∈ D,

κ(x,B) = κf (f(x), B), (48)

and these equations completely characterize κ as PX(D) = Pf(X)(f(D)) = 1. Note
that f(X) is a computable random variable in N, and so by Lemma 8.1, κf is
computable on f(D), and so κ is computable on D. �

8.2. Continuous and Dominated Settings. The most common way to calculate
conditional probabilities is to use Bayes’ rule, which requires the existence of a
conditional density. (Within statistics, a probability model is said to be dominated
when there is a conditional density.) We first recall some basic definitions.

Definition 8.4 (Density). Let (S,A, ν) be a measure space and let f : S → R+ be
an ν-integrable function. Then the function µ on A given by

µ(A) =

∫
A
fdν (49)
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for A ∈ A is a (finite) measure on (S,A) and f is called a density of µ (with
respect to ν). Note that g is a density of µ with respect to ν if and only if f = g
ν-a.e.

Definition 8.5 (Conditional density). Let X and Y be random variables in (com-
plete separable) metric spaces, let κX|Y be a version of P[X|Y], and assume that

there is a measure ν ∈M(S) and measurable function pX|Y(x|y) : S×T → R+ such
that pX|Y( · |y) is a density of κX|Y(y, · ) with respect to ν for PY-almost all y. That
is,

κX|Y(y,A) =

∫
A
pX|Y(x|y)ν(dx) (50)

for measurable sets A ⊆ S and PY-almost all y. Then pX|Y(x|y) is called a condi-
tional density of X given Y (with respect to ν).

Common parametric families of distributions (e.g., exponential families like Gauss-
ian, Gamma, etc.) admit conditional densities, and in these cases, the well-known
Bayes’ rule gives a formula for expressing the conditional distribution. We give a
proof of this classic result for completeness.

Lemma 8.6 (Bayes’ rule [Sch95, Thm. 1.13]). Let X and Y be random variables
as in Definition 3.5, let κX|Y be a version of the conditional distribution P[X|Y],
and assume that there exists a conditional density pX|Y(x|y). Then a function κ :
S × BT → [0, 1] satisfying

κY|X(x,B) =

∫
B pX|Y(x|y)PY(dy)∫
pX|Y(x|y)PY(dy)

(51)

for those points x for which the denominator is positive and finite, is a version of
the conditional distribution P[Y|X].

Proof. By Definition 3.5 and Fubini’s theorem, for Borel sets A ⊆ S and B ⊆ T , we
have that

P{X ∈ A, Y ∈ B} =

∫
B
κX|Y(y,A)PY(dy) (52)

=

∫
B

(∫
A
pX|Y(x|y)ν(dx)

)
PY(dy) (53)

=

∫
A

(∫
B
pX|Y(x|y)PY(dy)

)
ν(dx). (54)

Taking B = T , we have

PX(A) =

∫
A

(∫
pX|Y(x|y)PY(dy)

)
ν(dx). (55)

Because PX(S) = 1, this implies that the set of points x for which the denominator
of (51) is infinite has ν-measure zero, and thus PX-measure zero. Taking A to be
the set of points x for which the denominator is zero, we see that PX(A) = 0. It
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follows that (51) characterizes κ up to a PX-null set. Also by (55), we see that the
denominator is a density of PX with respect to ν, and so we have∫

A
κY|X(x,B)PX(dx) =

∫
A
κY|X(x,B)

(∫
pX|Y(x|y)PY(dy)

)
ν(dx). (56)

Finally, by the definition of κY|X, Equation (54), and the fact that the denominator is
positive and finite for PX-almost all x, we see that κY|X is a version of the conditional
distribution P[Y|X]. �

Comparing Bayes’ rule (51) to the definition of conditional density (50), we see
that any conditional density of Y given X (with respect to PY) satisfies

pY|X(y|x) =
pX|Y(x|y)∫

pX|Y(x|y)PY(dy)
, (57)

for P(X,Y )-almost all (x, y). We can now give the proof of Lemma 4.8.

of Lemma 4.8. Let κY|X be given by (51), and let B ⊆ T be an open set. By hy-

pothesis, the map φ : S → C(T,R+) given by φ(x) = pX|Y(x| · ) is continuous on
R, while the indicator function 1B is lower semicontinuous. Integration of a lower
semicontinuous function with respect to a probability measure is a lower semicon-
tinuous operation, and so the map x 7→

∫
1Bφ(x)dPY is lower semicontinuous on

R.
Note that for every x ∈ R, the function φ(x) is positive and bounded by hypoth-

esis. Integration of a bounded continuous function with respect to a probability
measure is a continuous operation, and so the map x 7→

∫
φ(x)dPY is positive and

continuous on R. Therefore the ratio in (51) is a lower semicontinuous function of
x ∈ R for fixed B, completing the proof. �

Using the following well-known result about integration of computable functions,
we can study when the conditional distribution characterized by Bayes’ rule is com-
putable.

Proposition 8.7 ([HR09a, Cor. 4.3.2]). Let S be a computable metric space, and
µ a computable probability measure on S. Let f : S → R+ be a bounded computable
function. Then

∫
fdµ is a computable real, uniformly in f .

Corollary 8.8 (Density and independence). Let U, V, and Y be computable ran-
dom variables (in computable metric spaces), where Y is independent of V given U.
Assume that there exists a conditional density pY|U(y|u) of Y given U (with respect
to ν) that is bounded and computable. Then the conditional distribution P[(U,V)|Y]
is computable.

Proof. Let X = (U,V). Then pY|X(y|(u, v)) = pY|U(y|u) is the conditional density of
Y given X (with respect to ν). Therefore, the computability of the integrand and the
existence of a bound imply, by Proposition 8.7, that P[(U,V)|Y] is computable. �
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8.3. Conditioning on Noisy Observations. As an immediate consequence of
Corollary 8.8, we obtain the computability of the following common situation in
probabilistic modeling: where the observed random variable has been corrupted by
independent absolutely continuous noise.

Corollary 8.9 (Independent noise). Let U be a computable random variable in a
computable metric space and let V and E be computable random variables in R.
Define Y = U+E. If PE is absolutely continuous with a bounded computable density
pE and E is independent of U and V then the conditional distribution P[(U,V) | Y]
is computable.

Proof. We have that

pY|U(y|u) = pE(y − u) (58)

is the conditional density of Y given U (with respect to Lebesgue measure). The
result then follows from Corollary 8.8. �

Pour-El and Richards [PER89, Ch. 1, Thm. 2] show that a twice continuously
differentiable computable function has a computable derivative (despite the fact
that Myhill [Myh71] exhibits a computable function [0, 1] → R whose derivative
is continuous, but not computable). Therefore, noise with a sufficiently smooth
distribution has a computable density, and by Corollary 8.9, a computable random
variable corrupted by such noise still admits a computable conditional distribution.

Furthermore, Corollary 8.9 implies that noiseless observations cannot always be
computably approximated by noisy ones. For example, even though an observation
corrupted with zero mean Gaussian noise with standard deviation σ may recover
the original condition as σ → 0, by our main noncomputability result (Theorem 6.7)
one cannot, in general, compute how small σ must be in order to bound the error
introduced by noise.

This result is also analogous to a classical theorem of information theory. Hartley
[Har28] and Shannon [Sha49] show that the capacity of a continuous real-valued
channel without noise is infinite, yet the addition of, e.g., Gaussian noise with ε > 0
variance causes the channel capacity to drop to a finite amount. The Gaussian noise
prevents all but a finite amount of information from being encoded in the bits of the
real number. Similarly, the amount of information in a continuous observation is too
much in general for a computer to be able to update a probabilistic model. However,
the addition of noise, as above, is sufficient for making conditioning possible on a
computer.

The computability of conditioning with noise, coupled with the noncomputability
of conditioning in general, has significant implications for our ability to recover a
signal when noise is added, and suggests several interesting questions. For example,
suppose we have a uniformly computable sequence of noise {En}n∈N with absolutely
continuous, uniformly computable densities such that the magnitude of the densities
goes to 0 in some sufficiently nice way, and consider Yn := U+En. Such a situation
could arise, e.g., when we have a signal with noise but some way to reduce the noise
over time.
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When there is a continuous version of P[(U,V)|Y], we have

limn→∞P[(U,V)|Yn] = P[(U,V)|Y] a.s. (59)

However, we know that the right side is, in general, noncomputable, despite the fact
that each term in the limit on the left side is computable.

This raises several questions, such as: What do bounds on how fast the se-
quence {P[(U,V)|Yn]}n∈N converges to P[(U,V)|Y] tell us about the computability
of P[(U,V)|Y]? What conditions on the relationship between U and the sequence
{En}n∈N will allow us to recover information about P[(U,V)|Y] from individual dis-
tributions P[(U,V)|Yn]?

8.4. Other Settings. Freer and Roy [FR10] show how to compute conditional dis-
tributions in the setting of exchangeable sequences. A classic result by de Finetti
shows that exchangeable sequences of random variables are in fact conditionally
i.i.d. sequences, conditioned on a random measure, often called the directing ran-
dom measure. Freer and Roy describe how to transform an algorithm for sampling
an exchangeable sequence into a rule for computing the posterior distribution of the
directing random measure given observations. The result is a corollary of a com-
putable version of de Finetti’s theorem [FR09], and covers a wide range of common
scenarios in nonparametric Bayesian statistics (often where no conditional density
exists).

Acknowledgments

A preliminary version of this article appeared as “Noncomputable conditional dis-
tributions” in Proceedings of the 26th Annual IEEE Symposium on Logic in Com-
puter Science, 107–116 [AFR11].

CEF was partially supported by NSF grants DMS-0901020 and DMS-0800198.
His work on this publication was made possible through the support of a grant from
the John Templeton Foundation. The opinions expressed in this publication are
those of the authors and do not necessarily reflect the views of the John Templeton
Foundation.

DMR was partially supported by graduate fellowships from the National Science
Foundation and MIT Lincoln Laboratory and is supported by a Newton Interna-
tional Fellowship and Emmanuel College.

The authors would like to thank Jeremy Avigad, Henry Cohn, Leslie Kaelbling,
Vikash Mansinghka, Hartley Rogers, Michael Sipser, and Joshua Tenenbaum for
helpful discussions, Bill Thurston for a useful comment regarding Lemma 7.1, Mart́ın
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