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Abstract. We prove a uniformly computable version of de Finetti’s the-
orem on exchangeable sequences of real random variables. In the process,
we develop machinery for computably recovering a distribution from its
sequence of moments, which suffices to prove the theorem in the case
of (almost surely) continuous directing random measures. In the gen-
eral case, we give a proof inspired by a randomized algorithm which
succeeds with probability one. Finally, we show how, as a consequence
of the main theorem, exchangeable stochastic processes in probabilistic
functional programming languages can be rewritten as procedures that
do not use mutation.
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1 Introduction

This paper examines the computable probability theory of exchangeable se-
quences of real-valued random variables; the main contribution is a uniformly
computable version of de Finetti’s theorem.

The classical result states that an exchangeable sequence of real random
variables is a mixture of independent and identically distributed (i.i.d.) sequences
of random variables. Moreover, there is an (almost surely unique) measure-valued
random variable, called the directing random measure, conditioned on which the
random sequence is i.i.d. The distribution of the directing random measure is
called the de Finetti measure.

We show that computable exchangeable sequences of real random variables
have computable de Finetti measures. In the process, we show that a distribution
on [0, 1]ω is computable if and only if its moments are uniformly computable.

This work is formulated in essentially the type-2 theory of effectivity (TTE)
framework for computable analysis, though it is also related to domain theoretic
representations of measures. Furthermore, our formalism coincides with those
distributions from which we can generate exact samples on a computer.



In particular, we highlight the relationship between exchangeability and mu-
tation in probabilistic programming languages. The computable de Finetti the-
orem can be used to uniformly transform procedures which induce exchangeable
stochastic processes into equivalent procedures which do not use mutation (see
Section 5).

1.1 de Finetti’s Theorem

We assume familiarity with the standard measure-theoretic formulation of prob-
ability theory (see, e.g., [Bil95] or [Kal02]). Fix a basic probability space (Ω,F ,P)
and let BR denote the Borel sets of R. By a random measure we mean a ran-
dom element in the space of Borel measures on R, i.e., a kernel from (Ω,F) to
(R,BR). An event A ∈ F is said to occur almost surely (a.s.) if PA = 1. We
denote the indicator function of a set B by 1B .

Let X = {Xi}i≥1 be an infinite sequence of real random variables. An infinite
sequence X is exchangeable if, for any finite set {k1, . . . , kj} of distinct indices,
(Xk1 , . . . , Xkj )

d=(X1, . . . , Xj), where d= denotes equality in distribution.

Theorem 1 (de Finetti [Kal05, Chap. 1.1]). Let X = {Xi}i≥1 be an ex-
changeable sequence of real-valued random variables. There is a random proba-
bility measure ν on R such that {Xi}i≥1 is conditionally i.i.d. with respect to ν.
That is,

P[X ∈ · | ν ] = ν∞ a.s. (1)

Moreover, ν is a.s. unique and given by

ν(B) = lim
n→∞

1
n

n∑
i=1

1B(Xi) a.s., (2)

where B ranges over BR. ut

We call ν the directing random measure, and its distribution, µ := L(ν), the
de Finetti measure. As in [Kal05, Chap. 1, Eq. 3], we may take expectations on
both sides of (1) to arrive at a characterization

P{X ∈ · } = Eν∞ =
∫
m∞µ(dm) (3)

of an exchangeable sequence as a mixture of i.i.d. sequences.
A Bayesian perspective suggests the following interpretation: exchangeable

sequences arise from independent observations from some latent random mea-
sure. Posterior analysis follows from placing a prior distribution on ν.

In 1931, de Finetti [dF31] proved the classical result for binary exchangeable
sequences, in which case the de Finetti measure is simply a mixture of Bernoulli
distributions; the exchangeable sequence is equivalent to repeatedly flipping a
coin whose weight is drawn from some distribution on [0, 1]. Later, Hewitt and



Savage [HS55] and Ryll-Nardzewski [RN57] extended the result to arbitrary real-
valued exchangeable sequences. We will refer to this more general version as the
de Finetti theorem. Hewitt and Savage [HS55] provide a history of the early
developments, and a history of more recent extensions can be found in Kingman
[Kin78], Diaconis and Freedman [DF84], Lauritzen [Lau84], and Aldous [Ald85].

1.2 The Computable de Finetti Theorem

Consider an exchangeable sequence of [0, 1]-valued random variables. In this case,
the de Finetti measure is a distribution on the (Borel) measures on [0, 1]. For
example, if the de Finetti measure is a Dirac delta on the uniform distribution on
[0, 1], then the induced exchangeable sequence consists of independent, uniformly
distributed random variables on [0, 1].

As another example, let p be a random variable, uniformly distributed on
[0, 1], and let ν = δp. Then the de Finetti measure is the uniform distribution
on Dirac delta measures on [0, 1], and the corresponding exchangeable sequence
is p, p, . . . , i.e., a constant sequence, marginally uniformly distributed.

Clearly, sampling a measure ν, and then repeated sampling from ν, induces
an exchangeable sequence; de Finetti’s theorem states that all exchangeable se-
quences have an (a.s.) unique representation of this form.

In both examples, the de Finetti measures are computable measures. (In Sec-
tion 2, we make this and related notions precise. For a more detailed example, see
our discussion of the Pólya urn construction of the Beta-Bernoulli process in Sec-
tion 5.) A natural question to ask is whether computable exchangeable sequences
always arise from independent samples from computable random distributions.
In fact, sampling from a computable de Finetti measure gives a computable
directing random measure ν; repeated sampling from ν induces a computable
exchangeable sequence (Proposition 1). Our main result is the converse: ev-
ery computable real-valued exchangeable sequence arises from a computable de
Finetti measure.

Theorem 2 (Computable de Finetti). Let X be a real-valued exchangeable
sequence and let µ be the distribution of its directing random measure ν. Then
X is computable iff µ is computable. Moreover, µ is uniformly computable in X,
and conversely.

1.3 Outline of the Proof

Let BR denote the Borel sets of R, let IR denote the set of finite unions of
open intervals, and let IQ denote the set of finite unions of open intervals with
rational endpoints. For k ≥ 1 and β ∈ BkR = BR × · · · × BR, we write β(i) to
denote the ith coordinate of β.

Let X = {Xi}i≥1 be an exchangeable sequence of real random variables, with
directing random measure ν. For every γ ∈ BR, we define a [0, 1]-valued random
variable Vγ := νγ. A classical result in probability theory [Kal02, Lem. 1.17]
implies that a Borel measure on R is uniquely characterized by the mass it



places on the open intervals with rational endpoints. Therefore, the distribution
of the stochastic process {Vτ}τ∈IQ determines the de Finetti measure µ (the
distribution of ν).

The mixed moments of the variables {Vγ}γ∈C , for a subset C ⊆ BR, are
defined to be the expectations of the monomials

∏k
i=1 Vβ(i), for k ≥ 1 and β ∈

Ck. The following relationship between the finite dimensional distributions of the
sequence X and the mixed moments of {Vβ}β∈BR

is an immediate consequence of
the characterization of an exchangeable sequence as a mixture of i.i.d. sequences
given by (3).

Lemma 1. P
(⋂k

i=1{Xi ∈ β(i)}
)

= E
(∏k

i=1 Vβ(i)

)
for k ≥ 1 and β ∈ BkR. ut

Assume that X is computable. If ν is a.s. continuous, we can compute the
mixed moments of {Vτ}τ∈IQ . In Section 3, we show how to computably recover
a distribution from its moments. This suffices to recover the de Finetti measure.

In the general case, point masses in ν prevent us from computing the mixed
moments. Here we use a proof inspired by a randomized algorithm which (a.s.)
avoids the point masses and recovers the de Finetti measure. For the complete
proof, see Section 4.4.

2 Computable Measures

We assume familiarity with the standard notions of computability theory and
computably enumerable (c.e.) sets (see, e.g., [Rog67] or [Soa87]). Recall that
r ∈ R is called a c.e. real when the set of all rationals less than r is a c.e. set.
Similarly, r is a co-c.e. real when the set of all rationals greater than r is c.e.
A real r is a computable real when it is both a c.e. and co-c.e. real.

The following representations for probability measures on computable T0

spaces [GSW07, §3] are devised from more general TTE representations in
[Sch07] and [Bos08], and agree with [Wei99] in the case of the unit interval.
This work is also related to domain theoretic representations of measure the-
ory (given in [Eda95], [Eda96], and [AES00]) and to constructive analysis (see
[Bau05]), though we do not explore this here.

Schröder [Sch07] has connected TTE representations with probabilistic pro-
cesses [SS06] which sample representations. In Section 5 we explore consequences
of the computable de Finetti theorem for probabilistic programming languages.

2.1 Representations of Probability Measures

Let S be a T0 second-countable space with a countable basis S that is closed
under finite unions. Assume that there is (and fix) an enumeration of S for which
the sets {C ∈ S : C ⊆ A ∩B} are c.e., uniformly in the indices of A,B ∈ S.

LetM1(S) denote the set of Borel probability measures on S (i.e., the proba-
bility measures on the σ-algebra generated by S). Such measures are determined
by the measure they assign to elements of S; we define the representation of



η ∈ M1(S) with respect to S to be the set {(B, q) ∈ S ×Q : ηB > q}. We say
that η is a computable measure when its representation is a c.e. set (in terms of
the fixed enumeration of S). In other words, η is computable if the measure it
assigns to a basis set B ∈ S is a c.e. real, uniformly in the index of B in the
enumeration of S. This representation for M1(S) is admissible with respect to
the weak topology, hence computably equivalent (see [Wei00, Chap. 3]) to the
canonical representation for Borel measures given in [Sch07]. (Consequences for
measurable functions with respect to admissible representations can be found in
[BG07, §2].) We will be interested in representing measures η ∈M1(S) where S
is either Rω, [0, 1]k, or M1(R), topologized as described below.

Consider Rω under the product topology, where R is endowed with its stan-
dard topology. Fix the canonical enumeration of IQ and the enumeration of⋃
k≥1 IkQ induced by interleaving (and the pairing function). A suitable basis

for this product topology is given by the cylinders {σ × Rω : σ ∈
⋃
k≥1 IkQ}.

Let ~x = {xi}i≥1 be a sequence of real-valued random variables (e.g., an ex-
changeable sequence X, or {Vτ}τ∈IQ under the canonical enumeration of IQ).
The representation of the joint distribution of ~x is

⋃
k≥1

{
(σ, q) ∈ IkQ × Q :

P
(⋂k

i=1{xi ∈ σ(i)}
)
> q

}
. We say that ~x is computably distributed when this

set is c.e. Informally, we will call a sequence ~x computable when it is computably
distributed.

Fix k ≥ 1, and consider the right order topology on [0, 1] generated by the
basis T =

{
(c, 1] : c ∈ Q, 0 ≤ c < 1

}
∪ {[0, 1]}. Let S = T k be a basis for the

product of the right order topology on [0, 1]k. Let ~w = (w1, . . . , wk) be a random
vector in [0, 1]k. The representation of the joint distribution of ~w with respect to
S is {(~c, q) ∈ Qk ×Q : P

(⋂k
i=1{wi > ci}

)
> q}. We will use this representation

in Proposition 1 for {Vσ(i)}i≤k where σ ∈ IkQ.
The de Finetti measure µ is the distribution of the directing random measure

ν, anM1(R)-valued random variable. For k ≥ 1, β ∈ BkR, and ~c ∈ Qk, we define
the event Yβ,~c :=

⋂k
i=1{νβ(i) > ci}. The sets {ν : ντ > c} for τ ∈ IQ and

c ∈ Q form a subbasis for the weak topology onM1(R). We therefore represent
the distribution µ by

⋃
k≥1{(σ,~c, q) ∈ IkQ ×Qk ×Q : PYσ,~c > q}, and say that

µ is computable when PYσ,~c is a c.e. real, uniformly in σ and ~c.

2.2 Computable de Finetti Measures

In the remainder of the paper, let X be a real-valued exchangeable sequence
with directing random measure ν and de Finetti measure µ.

Proposition 1. X is uniformly computable in µ.

Proof. We give a proof that relativizes to µ; without loss of generality, assume
that µ is computable. Then P

(⋂k
i=1{ν : νσ(i) > ci}

)
is a c.e. real, uniformly

in σ ∈ IkQ and ~c ∈ Qk. Therefore, the joint distribution of {Vσ(i)}i≤k under the
right order topology is computable, uniformly in σ. By Lemma 1, P

(⋂k
i=1{Xi ∈

σ(i)}
)

= E
(∏k

i=1 Vσ(i)

)
. Because the monomial maps [0, 1]k into [0, 1] and is

continuous, this expectation is a c.e. real, uniformly in σ [Sch07, Prop. 3.6]. ut



3 The Computable Moment Problem

One often has access to the moments of a distribution, and wishes to recover the
underlying distribution. Let η be a distribution on [0, 1]ω, and let ~x = {xi}i≥1 be
a sequence of [0, 1]-valued random variables with distribution η. Classically, the
distribution of η is uniquely determined by the mixed moments of ~x. We show
that a distribution on [0, 1]ω is computable iff its sequence of mixed moments is
uniformly computable.

To show that η is computable, it suffices to show that η(σ × [0, 1]ω) is a
c.e. real for σ ∈ IkQ, uniformly in σ. Recall that η(σ × [0, 1]ω) = E1σ×[0,1]ω .
Using the effective Weierstrass theorem ([Wei00, p. 161] or [PR89, p. 45]), we
can approximate the indicator function by a sequence of rational polynomials
that converge pointwise from below:

Lemma 2 (Polynomial approximations). There is a computable sequence
{pn,σ : n ∈ ω, σ ∈

⋃
k≥1 IkQ} of rational polynomials where pn,σ is in k vari-

ables (for σ ∈ IkQ) and, for ~x ∈ [0, 1]k we have −1 ≤ pn,σ(~x) ≤ 1σ(~x) and
limn pn,σ(~x) = 1σ(~x). ut

By the dominated convergence theorem, the expectations of the sequence con-
verge to η(σ × [0, 1]ω) from below:

Lemma 3. Fix k ≥ 1 and σ ∈ IkQ, and let ~x = (x1, . . . , xk) be a random vector
in [0, 1]k. Then E

(
1σ(~x)

)
= supn E

(
pn,σ(~x)

)
. ut

Theorem 3 (Computable moments). Let ~x = (xi)i≥1 be a random vector
in [0, 1]ω with distribution η. Then η is computable iff the mixed moments of
{xi}i≥1 are uniformly computable.

Proof. All monomials in {xi}i≥1 are bounded and continuous on [0, 1]ω. If η is
computable, then the mixed moments are uniformly computable by a computable
integration result [Sch07, Prop. 3.6].

Now suppose the mixed moments of {xi}i≥1 are uniformly computable. To
establish the computability of η, it suffices to show that η(σ×[0, 1]ω) is a c.e. real,
uniformly in σ. Note that η(σ × [0, 1]ω) = E

(
1σ×[0,1]ω (~x)

)
= E

(
1σ(x1, . . . , xk)

)
.

By Lemma 3, E
(
1σ(x1, . . . , xk)

)
= supn E

(
pn,σ(x1, . . . , xk)

)
. The sequence of

polynomials
(
pn,σ(x1, . . . , xk)

)
n∈ω is uniformly computable by Lemma 2. The

expectation of each polynomial is a Q-linear combination of moments, hence
computable. ut

4 The Computable de Finetti Theorem

4.1 Continuous Directing Random Measures

For k ≥ 1 and ψ ∈ IkR, we say that ψ has no mass on its boundary when
P
(⋃k

i=1{Xi ∈ ∂ψ(i)}
)

= 0.



Lemma 4. Suppose X is computable. Then the mixed moments of {Vτ}τ∈IQ are
uniformly c.e. reals and the mixed moments of {Vτ}τ∈IQ are uniformly co-c.e.
reals. In particular, if σ ∈ IkQ has no mass on its boundary, then the moment
E
(∏k

i=1 Vσ(i)

)
is a computable real.

Proof. Let k ≥ 1 and σ ∈ IkQ. By Lemma 1, E
(∏k

i=1 Vσ(i)

)
= P

(⋂k
i=1{Xi ∈

σ(i)}
)
, which is a c.e. real because X is computable. Similarly, E

(∏k
i=1 Vσ(i)

)
=

P
(⋂k

i=1{Xi ∈ σ(i)}
)
, which is the probability of a finite union of closed rational

cylinders, and thus a co-c.e. real (as we can computably enumerate all τ ∈ IkQ
contained in the complement of a given closed rational cylinder). When σ has
no mass on its boundary, E

(∏k
i=1 Vσ(i)

)
= E

(∏k
i=1 Vσ(i)

)
, which is both c.e. and

co-c.e. ut

Proposition 2 (Computable de Finetti – a.s. continuous ν). Assume that
ν is continuous with probability one. Then µ is uniformly computable in X, and
conversely.

Proof. By Proposition 1, X is uniformly computable in µ. We now give a proof
of the other direction that relativizes to X; without loss of generality, assume
that X is computable. Let k ≥ 1 and consider σ ∈ IkQ. The (a.s.) continuity of
ν implies that P

(⋃k
i=1{Xi ∈ ∂σ(i)}

)
= 0, i.e., σ has no mass on its boundary.

Therefore the moment E
(∏k

i=1 Vσ(i)

)
is computable by Lemma 4. By the com-

putable moment theorem (Theorem 3), the joint distribution of the variables
{Vτ}τ∈IQ is computable. ut

4.2 “Randomized” Proof Sketch

The task of lower bounding the measure of the events Yσ,~c for σ ∈ IkQ and
~c ∈ Qk is complicated by the potential existence of point masses on any of the
boundaries ∂σ(i) of σ(i). If X is a computable exchangeable sequence for which
ν is discontinuous at some rational point with non-zero probability, the mixed
moments of {Vτ}τ∈IQ are c.e., but not co-c.e., reals (by Lemma 4). Therefore the
computable moment theorem (Theorem 3) is inapplicable. For arbitrary directing
random measures, we give a proof of the computable de Finetti theorem which
works regardless of the location of point masses.

Consider the following sketch of a “randomized algorithm”: We draw a count-
ably infinite set of real numbers A ⊆ R from a continuous distribution with
support on the entire real line (e.g., Gaussian or Cauchy). Note that, with prob-
ability one (over the draw), A will be dense in R, and no point mass of ν will
be in A. Let IA denote the set of finite unions of intervals with endpoints in A.
Because there is (a.s.) no mass on any boundary of any ψ ∈ IA, we can proceed
as in the case of (a.s.) continuous ν, in terms of this alternative basis.

If X is computable, we can compute all moments (relative to the infinite
representations of the points of A) by giving c.e. (in A) lower and (as in Lemma 4)
upper bounds. By the computable moment theorem (Theorem 3) we can compute



(in A) the joint distribution of {Vψ}ψ∈IA . This joint distribution classically
determines the de Finetti measure. Moreover, we can compute (in A) all rational
lower bounds on any PYσ,~c for σ ∈ IkQ, our original basis.

This algorithm essentially constitutes a (degenerate) probabilistic process
(see [SS06]) which returns a representation of the de Finetti measure with prob-
ability one. A proof along these lines could be formalized using the TTE and
probabilistic process frameworks. Here, however, we provide a construction that
makes explicit the representation in terms of our rational basis, and which can
be seen as a “derandomization” of this algorithm.

Weihrauch [Wei99, Thm. 3.6] proves a computable integration result via an
argument that could likewise be seen as a derandomization of an algorithm which
densely subdivides the unit interval at random locations to avoid mass on the
division boundaries. Similar arguments are used to avoid mass on the boundaries
of open hypercubes [Mül99, Thm. 3.7] and open balls [Bos08, Lem. 2.15]. These
arguments also resemble the classic proof of the Portmanteau theorem [Kal02,
Thm. 4.25], in which an uncountable family of sets with disjoint boundaries is
defined, almost all of which have no mass on their boundaries.

4.3 Rational Refinements and Polynomial Approximations

We call ψ ∈ IkR a refinement of ϕ ∈ IkR, and write ψ C ϕ, when ψ(i) ⊆
ϕ(i) for all i ≤ k. For n ∈ ω and ~c = (c1, . . . , ck) ∈ Qk, we will denote
by pn,~c the polynomial pn,σ (defined in Lemma 2), where σ = (c1, 2) × · · · ×
(ck, 2). Let ~x = (x1, . . . , xk), and similarly with ~y. We can write pn,~c(~x) =
p+
n,~c(~x)− p−n,~c(~x), where p+

n,~c and p−n,~c are polynomials with positive coefficients.
Define the 2k-variable polynomial qn,~c(~x, ~y) := p+

n,~c(~x)− p−n,~c(~y). We will denote
qn,~c(Vψ(1), . . . , Vψ(k), Vζ(1), . . . , Vζ(k)) by qn,~c(Vψ, Vζ), and similarly with pn,~c.

Proposition 3. Let σ ∈ IkQ and let ~c ∈ Qk and n ∈ ω. If X is computable,
then Eqn,~c(Vσ, Vσ) is a c.e. real (uniformly in σ,~c, and n).

Proof. By Lemma 4, each monomial of p+
n,~c(Vσ) has a c.e. real expectation, and

each monomial of p−n,~c(Vσ) has a co-c.e. real expectation, and so by linearity of
expectation, Eqn,~c(Vσ, Vσ) is a c.e. real. ut

4.4 Proof of the Computable de Finetti Theorem

Proof of Theorem 2 (Computable de Finetti). The sequence X is uniformly
computable in µ by Proposition 1. We now give a proof of the other direction
that relativizes to X; without loss of generality, suppose that X is computable.
Let π ∈ IkQ and ~c ∈ Qk. It suffices to show that the probability PYπ,~c is a c.e.
real (uniformly in π and ~c). We do this by a series of reductions to quantities of
the form Eqn,~c(Vσ, Vσ) for σ ∈ IkQ, which by Proposition 3 are c.e. reals.

Note that PYπ,~c = E1Yπ,~c . If ψ ∈ IkR satisfies ψ C π, then Yψ,~c ⊆ Yπ,~c.
Furthermore, IkR is dense in IkQ, and so by the dominated convergence theorem



we have that E1Yπ,~c = supψCπ E1Yψ,~c . By the definitions of Y and V we have
E1Yψ,~c = E(1(c1,2)×···×(ck,2)(Vψ(1), . . . , Vψ(k))), which, by a Weierstrass approx-
imation (Lemma 3) equals supn Epn,~c(Vψ).

If ζ,ϕ ∈ IR satisfy ζ C ϕ then Vζ ≤ Vϕ a.s. Multiplication is continuous,
and so the dominated convergence theorem gives us

E
(∏k

i=1 Vψ(i)

)
= sup
σCψ

E
(∏k

i=1 Vσ(i)

)
and (4)

E
(∏k

i=1 Vψ(i)

)
= inf
τBψ

E
(∏k

i=1 Vτ(i)

)
, (5)

where σ and τ range over IkQ. By the linearity of expectation, Ep+
n,~c(Vψ) =

supσCψ Ep+
n,~c(Vσ) and Ep−n,~c(Vψ) = infτBψ Ep−n,~c(Vτ ).

If ψ has no mass on its boundary then Vψ(i) = V
ψ(i)

a.s. for i ≤ k, and so

Epn,~c(Vψ) = Eqn,~c(Vψ, Vψ) (6)
= Eqn,~c(Vψ, Vψ) (7)

= Ep+
n,~c(Vψ)− Ep−n,~c(Vψ) (8)

= sup
σCψ

Ep+
n,~c(Vσ)− inf

τBψ
Ep−n,~c(Vτ ) (9)

= sup
σCψCτ

Eqn,~c(Vσ, Vτ ). (10)

Because there are only countably many point masses, the ψ ∈ IkR with no
mass on their boundaries are dense in IkQ. Therefore,

sup
ψCπ

Epn,~c(Vψ) = sup
ψCπ

sup
σCψCτ

Eqn,~c(Vσ, Vτ ). (11)

Note that {(σ, τ) : (∃ψ C π) σ C ψ C τ} = {(σ, τ) : σ C π and σ C τ}. Hence

sup
ψCπ

sup
σCψ

sup
τBψ

Eqn,~c(Vσ, Vτ ) = sup
σCπ

sup
τBσ

Eqn,~c(Vσ, Vτ ). (12)

Again by dominated convergence we have supτBσ Eqn,~c(Vσ, Vτ ) = Eqn,~c(Vσ, Vσ).
In summary, we have PYπ,~c = supn supσCπ Eqn,~c(Vσ, Vσ). Finally, by Proposi-
tion 3,

{
Eqn,~c(Vσ, Vσ) : σ C π and n ∈ ω

}
is a set of uniformly c.e. reals. ut

5 Exchangeability in Probabilistic Programs

Functional programming languages with probabilistic choice operators have re-
cently been proposed as universal languages for statistical modeling (e.g., IBAL
[Pfe01], λ◦[PPT08], and Church [GMR+08]). Although the semantics of proba-
bilistic programs have been studied extensively in theoretical computer science
in the context of randomized algorithms (e.g., [Koz81] and [JP89]), this appli-
cation of probabilistic programs to universal statistical modeling has a different



character which has raised a number of interesting theoretical questions (e.g.,
[RP02], [PPT08], [GMR+08], [RMG+08], and [Man09]).

The computable de Finetti theorem has implications for the semantics of
probabilistic programs, especially concerning the choice of whether or not to al-
low mutation (i.e., the ability of a program to modify its own state as it runs). For
concreteness, we will explore this connection using Church, a probabilistic func-
tional programming language. Church extends Scheme (a dialect of LISP) with
a boolean-valued flip procedure, which denotes the Bernoulli distribution. In
Church, an expression denotes the distribution induced by evaluation. For exam-
ple, (+ (flip) (flip) (flip)) denotes a Binomial(n = 3, p = 1

2 ) distribution
and (λ (x) (if (flip) x 0)) denotes the probability kernel x 7→ 1

2 (δx + δ0).
Church is call-by-value and so (= (flip) (flip)) denotes a Bernoulli distribu-
tion, while the application of the procedure (λ (x) (= x x)) to the argument
(flip), written ((λ (x) (= x x)) (flip)), denotes δ1. (For more details, see
[GMR+08].) If an expression modifies its environment using mutation it might
not denote a fixed distribution. For example, a procedure may keep a counter
variable and return an increasing sequence of integers on repeated calls.

Consider the Beta-Bernoulli process and the Pólya urn scheme written in
Church. While these two processes look different, they induce the same distribu-
tion on sequences. We will define the procedure sample-coin such that calling
sample-coin returns a new procedure which itself returns random binary values.
The probabilistic program

(define my-coin (sample-coin))
(my-coin) (my-coin) (my-coin) (my-coin) (my-coin) ...

defines a random binary sequence. Fix a, b > 0. Consider the following two
implementations of sample-coin (and recall that the (λ () . . . ) special form
creates a procedure of no arguments):

(i)

(define (sample-coin)
(let ((weight (beta a b)))

(λ () (flip weight)) ) )

(ii)

(define (sample-coin)
(let ((red a)

(total (+ a b)) )
(λ () (let ((x (flip red

total
)))

(set! red (+ red x))
(set! total (+ total 1))
x ) ) )

In case (i), evaluating (my-coin) returns a 1 with probability weight and a
0 otherwise, where the shared weight parameter is itself drawn from a Beta(a, b)
distribution on [0, 1]. Note that the sequence of values obtained by evaluating
(my-coin) is exchangeable but not i.i.d. (e.g., an initial sequence of ten 1’s
leads one to predict that the next draw is more likely to be 1 than 0). However,
conditioned on the weight (a variable within the opaque procedure my-coin)
the sequence is i.i.d. A second random coin constructed by (define your-coin



(sample-coin)) will have a different weight (a.s.) and will generate a sequence
that is independent of my-coin’s.

The sequence induced by (i) is exchangeable because applications of beta
and flip return independent samples. The code in (ii) implements the Pólya
urn scheme with a red balls and b black balls (see [dF75, Chap. 11.4]), and the
sequence of return values is exchangeable because its joint distribution depends
only on the number of red and black balls and not on their order.

Because the sequence induced by (ii) is exchangeable, de Finetti’s theorem
implies that its distribution is equivalent to that induced by i.i.d. draws from
some some random measure (the directing random measure). In the case of the
Pólya urn scheme, the directing random measure is a random Bernoulli whose
weight parameter has a Beta(a, b) distribution. Therefore (i) denotes the de
Finetti measure, and (i) and (ii) induce the same distribution over sequences.

However, there is an important difference between these two implementa-
tions. While (i) denotes the de Finetti measure, (ii) does not, because samples
from it do not denote fixed distributions: The state of a procedure my-coin sam-
pled using (ii) changes after each iteration, as the sufficient statistics are updated
(using the mutation operator set!). Therefore, each element of the sequence is
generated from a different distribution. Even though the sequence of calls to
such a my-coin has the same marginal distribution as those given by repeated
calls to a my-coin sampled using (i), a procedure my-coin sampled using (ii)
could be thought of as a probability kernel which depends on the state.

In contrast, a my-coin sampled using (i) does not modify itself via mutation;
the value of weight does not change after it is randomly initialized and there-
fore my-coin denotes a fixed distribution — a particular Bernoulli. Its marginal
distribution is a random Bernoulli, precisely the directing random measure of
the Beta-Bernoulli process.

The computable de Finetti theorem could be used to uniformly transform
(ii) into a procedure sample-weight which does not use mutation and whose
application is equivalent in distribution to the evaluation of (beta a b). In
general, an implementation of Theorem 2 transforms code which generates an
exchangeable sequence (like (ii)) into code representing the de Finetti measure
(i.e., a procedure of the form (i) which does not use mutation). In addition to
their simpler semantics, mutation-free procedures are often desirable for prac-
tical reasons. For example, having sampled the directing random measure, an
exchangeable sequence of random variables can be efficiently sampled in parallel
without the overhead necessary to communicate sufficient statistics.

5.1 Partial Exchangeability of Arrays and Other Data Structures

The example above involved binary sequences, but the computable de Finetti
theorem can be used to transform implementations of real exchangeable se-
quences. For example, given a probabilistic program outputting repeated draws
from a distribution with a Dirichlet process prior via the Chinese restaurant
process [Ald85] representation, we can automatically recover a version of the



random directing measure characterized by Sethuraman’s stick-breaking con-
struction [Set94].

More general de Finetti-type results deal with variables taking values other
than reals, or weaken exchangeability to various notions of partial exchange-
ability. The Indian buffet process, defined in [GG05], can be interpreted as a
set-valued exchangeable sequence and can be written in a way analogous to
the Pólya urn in (ii). A corresponding stick-breaking construction given by
[TGG07] (following [TJ07]) is analogous to the code in (i), but gives only a
∆1-index for the (a.s.) finite set of indices (with respect to a random countable
set of reals sampled from the base measure), rather than its canonical index (see
[Soa87, II.2]). This observation was first noted in [RMG+08]. In the case of the
Indian buffet process on a discrete base measure (where we can fix an enumer-
ation of all finite sets of elements in the support), the computable de Finetti
theorem implies the existence of a computable de Finetti measure that gives
canonical indices for the sets. In the general case, the computable de Finetti
theorem is not directly applicable, and the question of its computability is open.

Probabilistic models of relational data ([KTG+06] and [RT09]) can be viewed
as random binary (2-dimensional) arrays whose distributions are separately (or
jointly) exchangeable, i.e., invariant under (simultaneous) permutations of the
rows and columns. Aldous [Ald81] and Hoover [Hoo79] gave de Finetti-type
results for infinite arrays that satisfy these two notions of partial exchangeability.
An extension of the computable de Finetti theorem to this setting would provide
an analogous uniform transformation on arrays.

Data structures such as trees or graphs might also be approached in this
manner. Diaconis and Janson [DJ08] and Austin [Aus08] explore many connec-
tions between partially exchangeable random graphs and the theory of graph
limits.
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